Dr. Guanhua Yang | Electrochemistry | Best Researcher Award

Dr. Guanhua Yang | Electrochemistry | Best Researcher Award

Dr. Guanhua Yang, Electrochemistry , Teacher at Guangxi University of Science and Technology, China

Dr. Guanhua Yang is an Associate Professor and Master’s Degree Supervisor, specializing in advanced materials for energy storage. With a Ph.D. in Chemistry, he has made substantial contributions to electrochemical energy technologies, particularly in the development of novel lithium-ion, sodium-ion, and metal-air batteries. Dr. Yang’s research is centered around the synthesis, structural optimization, and performance enhancement of electrode materials. He has published 19 academic papers in reputed international and domestic journals and holds 8 authorized patents. His innovative work has earned him the First Prize in Guangxi Technological Invention, underscoring his contributions to applied material science and sustainable energy solutions. Passionate about bridging the gap between lab innovation and industrial application, he guides graduate students while collaborating on multidisciplinary projects. Through his research and mentorship, Dr. Yang continues to impact the field of electrochemistry and renewable energy technologies.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Guanhua Yang, an Associate Professor and Master’s supervisor, stands out as a promising candidate for the “Best Researcher Award” due to his strong academic and research portfolio in the field of electrochemistry—particularly in energy storage materials. He has made significant strides in the development of lithium-ion and sodium-ion battery technologies and has published 19 peer-reviewed articles in reputed journals, demonstrating consistent research output and scientific rigor. Additionally, Dr. Yang holds 8 authorized patents, showing innovation and a strong practical application of his research. His work has earned him the First Prize in Guangxi Technological Invention, underlining his contributions to applied research and regional innovation.  Dr. Guanhua Yang is highly suitable for the “Best Researcher Award”, given his impactful publications, technological innovations, academic mentorship, and contributions to advancing energy storage science. His work not only advances theoretical understanding but also provides real-world solutions to modern energy challenges.

🎓Education:

Dr. Guanhua Yang completed his Ph.D. in Chemistry with a specialization in energy storage materials and electrochemical systems. During his academic training, he focused extensively on the design and application of high-performance electrode materials for batteries, combining theoretical insights with practical experimentation. His doctoral studies laid a strong foundation in nanomaterials synthesis, materials characterization, and electrochemical analysis. Dr. Yang actively participated in interdisciplinary research programs and contributed to several collaborative projects involving battery materials and clean energy technology. His education journey emphasized problem-solving, material innovation, and scientific publication, enabling him to bridge advanced material science with real-world applications. As part of his graduate and doctoral education, he developed a robust understanding of lithium-ion and sodium-ion battery chemistries, making him an expert in next-generation energy systems. His academic background continues to shape his ongoing research and teaching career in the field of sustainable energy.

🏢Work Experience:

Dr. Guanhua Yang currently serves as an Associate Professor and Master’s Degree Supervisor, where he mentors graduate students and leads pioneering research on energy storage systems. His professional experience is rooted in the development of electrochemical materials, specifically for lithium-ion, sodium-ion, and metal-air battery technologies. With a strong academic portfolio, Dr. Yang has authored 19 research publications and secured 8 patents, reflecting both innovation and industrial relevance. His role as a supervisor has fostered student involvement in cutting-edge materials science research, encouraging both theoretical learning and hands-on laboratory work. Dr. Yang has also been involved in collaborative projects with institutions and industry partners, aiming to translate laboratory research into scalable technologies. His leadership has made significant contributions to material development for high-capacity, long-life energy storage systems. His practical experience includes advanced synthesis techniques, battery assembly, and electrochemical testing, positioning him as a respected researcher in applied chemistry and energy innovation.

🏅Awards: 

Dr. Guanhua Yang has received numerous accolades for his contributions to materials chemistry and energy technology. His most notable recognition is the First Prize in Guangxi Technological Invention, awarded for groundbreaking work in battery material innovation. This award highlights his role in translating scientific research into practical applications, particularly in the field of energy storage. In addition to prestigious awards, he holds 8 authorized patents, showcasing his commitment to research with industrial impact. His patents cover novel electrode materials, battery designs, and functional nanomaterials for sustainable energy systems. Dr. Yang’s academic excellence is further evidenced by his 19 peer-reviewed publications, many in high-impact journals. His awards and honors reflect his multidisciplinary influence, strong research ethics, and dedication to solving global energy challenges. Through these achievements, Dr. Yang continues to be recognized as a thought leader in nanotechnology-driven energy research.

🔬Research Focus:

Dr. Guanhua Yang’s research is focused on the preparation and application of novel energy storage materials, particularly for next-generation battery technologies. His primary interests include lithium-ion batteries, sodium-ion batteries, and metal-air batteries. Dr. Yang explores material synthesis methods such as arc-discharge and hydrothermal processes, aiming to improve energy density, cycle life, and safety of electrochemical systems. A key part of his research involves the surface functionalization of carbon-based materials, the development of heteroatom-doped structures, and the integration of transition metal dichalcogenides. His work bridges the gap between materials chemistry and energy technology by optimizing electrode performance for practical applications. He is also interested in oxygen reduction electrocatalysis for air-based battery systems, positioning his research at the intersection of nanomaterials, electrochemistry, and renewable energy. Dr. Yang’s focus on sustainable energy storage contributes significantly to cleaner and more efficient battery solutions for the future.

Publication Top Notes:

1. Surface Functionalized Porous Spherical Hard Carbon Material Derived from Taro Starch for High Performance Sodium Storage

2. Construction of MoS₂/CoS₂/SNGr Three-Dimensional Interconnected Network Composites for Advanced Sodium-Ion Batteries

Citations: 1

3. Arc-Discharge In Situ Synthesis of Dual-Carbonaceous-Layer-Coated SnS Nanoparticles with High Lithium-Ion Storage Capacity

Citations: 1

 

Dr. Chenxu Wang | Electrochemistry | Green Chemistry Award

Dr. Chenxu Wang | Electrochemistry | Green Chemistry Award

Dr. Chenxu Wang , Electrochemistry ,Research associate at University of Texas at Dallas, United States

Dr. Chenxu Wang is a dynamic and innovative Research Associate at the BEACONS Center, University of Texas at Dallas. With a solid foundation in electrochemical energy storage, he completed his Ph.D. in 2023 from Washington State University under the mentorship of Dr. Weihong Zhong. Since 2016, he has consistently contributed to the field of battery technology, focusing on lithium-ion, lithium-metal, and sodium-ion systems. His research incorporates cutting-edge innovations such as protein-based solid-state materials for enhanced battery safety and performance. Alongside academic excellence, Dr. Wang brings hands-on experience from the battery manufacturing industry, enriching his practical insights. He has published over 18 scientific papers and is the lead author of a technical book. He actively engages with the scientific community through editorial roles and collaborations. Dr. Wang is dedicated to advancing green, safe, and high-performance battery technologies for a sustainable energy future.

Professional Profile :         

Google Scholar

Summary of Suitability for Award:

Dr. Chenxu Wang is an exceptional candidate for the Green Chemistry Award due to his innovative integration of biological and natural materials—particularly silk fibroin proteins—into the design of advanced battery components. His work directly aligns with the principles of green chemistry. Dr. Wang has demonstrated that green materials can match or surpass traditional materials in performance. His contributions include the development of protein-based solid electrolytes, eco-friendly binders, and non-toxic separators, which not only advance battery safety and efficiency but also minimize environmental impact. Dr. Chenxu Wang’s pioneering work in applying natural biomolecules to battery technology presents a paradigm shift toward eco-conscious energy storage solutions. His holistic approach—spanning green material synthesis, automation, and recycling—makes him an ideal recipient of the “Green Chemistry Award”. His research not only addresses key environmental challenges but also offers scalable solutions for the clean energy transition.

🎓Education:

Dr. Chenxu Wang earned his Ph.D. in Materials Science and Engineering from Washington State University (WSU) in 2023, where he conducted advanced battery research under Dr. Weihong Zhong. His doctoral work focused on sustainable energy storage systems, particularly lithium-metal and lithium-sulfur batteries. During his time at WSU, he received prestigious awards recognizing both academic excellence and research contributions. Prior to his Ph.D., Dr. Wang obtained his undergraduate and possibly a master’s degree (details unspecified) in fields related to chemistry or materials science, laying the groundwork for his later specialization in electrochemical systems. His academic training has been marked by a strong emphasis on interdisciplinary problem-solving, including materials synthesis, electrochemical characterization, and green chemistry applications. Throughout his education, Dr. Wang developed a strong technical foundation and research mindset that continue to fuel his contributions to battery innovation and electrochemical energy storage.

🏢Work Experience:

Dr. Chenxu Wang is currently serving as a Research Associate at the BEACONS Center, University of Texas at Dallas, where he contributes to groundbreaking projects in next-generation battery technologies. Since 2016, he has worked extensively on battery research, accumulating a unique blend of academic and industrial experience. He previously worked in the battery manufacturing industry, where he gained hands-on experience in the development and scaling of energy storage materials and systems. During his Ph.D. at WSU, he managed several interdisciplinary research projects on solid-state electrolytes and sustainable battery materials. Dr. Wang is involved in both laboratory experimentation and theoretical modeling. In addition to his research roles, he is active in the scientific publishing ecosystem, serving on the Youth Editorial Board of Exploration and as a Guest Editor for Batteries. His contributions span project leadership, material innovation, and research communication within the energy storage field.

🏅Awards: 

Dr. Chenxu Wang has been recognized with multiple prestigious awards that highlight his exceptional academic and research performance. In 2023, he received the Outstanding Dissertation Award and the Outstanding Research Assistant Award from Washington State University, acknowledging the novelty and impact of his Ph.D. work in the field of electrochemical energy storage. These accolades are a testament to his contributions toward addressing real-world energy challenges through scientific innovation. Dr. Wang’s leadership and editorial responsibilities also reflect his growing recognition in the global research community. He currently serves as a Guest Editor for the journal Batteries and is a Youth Editorial Board Member for the journal Exploration. His research excellence and dedication to sustainable energy have also led to collaborative opportunities and growing citations (over 253 citations) across reputable journals. These honors reflect Dr. Wang’s commitment to advancing green chemistry and sustainable battery technology.

🔬Research Focus:

Dr. Chenxu Wang’s research is centered on electrochemical energy storage systems, with a strong emphasis on green chemistry, sustainability, and advanced battery materials. His innovative work involves integrating natural proteins such as silk fibroin into solid-state battery components, which significantly improve safety, ionic conductivity, and performance. He has developed protein-based solid electrolytes, binders, and separators, targeting the challenges of dendrite formation and the polysulfide shuttle effect in lithium-metal and lithium-sulfur batteries. His research also explores automated synthesis, material characterization, and battery recycling, aiming to create scalable, eco-friendly solutions for energy storage. Dr. Wang’s unique blend of academic research and industry exposure allows him to bridge theory and practice, contributing meaningfully to real-world battery innovations. His projects on high-energy-density lithium/sodium-ion batteries and advanced liquid electrolytes further reflect his comprehensive approach to solving multi-faceted challenges in next-generation energy storage.

Publication Top Notes:

A water-soluble binary conductive binder for Si anode lithium ion battery
Citations: 57

Natural protein as novel additive of a commercial electrolyte for Long-Cycling lithium metal batteries
Citations: 30

Protein-modified SEI formation and evolution in Li metal batteries
Citations: 29

A protein-enabled protective film with functions of self-adapting and anion-anchoring for stabilizing lithium-metal batteries
Citations: 26

Synthesis of β-FeOOH nanorods adhered to pine-biomass carbon as a low-cost anode material for Li-ion batteries
Citations: 20

A bioinspired coating for stabilizing Li metal batteries
Citations: 18

Promising sustainable technology for energy storage devices: Natural protein-derived active materials
Citations: 15

Incorporating SnO2 nanodots into wood flour-derived hierarchically porous carbon as low-cost anodes for superior lithium storage
Citations: 12

Interface-tailored forces fluffing protein fiber membranes for high-performance filtration
Citations: 10

Highly dispersed SnO2 nanoparticles confined on xylem fiber-derived carbon frameworks as anodes for lithium-ion batteries
Citations: 7

An amino acid-enabled separator for effective stabilization of Li anodes
Citations: 6

Effects of Anions and Protein Structures on Protein‐Based Solid Electrolytes
Citations: 6

Prof. Dr. Junbom Kim | Electrochemistry | Best Researcher Award

Prof. Dr. Junbom Kim | Electrochemistry | Best Researcher Award

Prof. Dr. Junbom Kim | Electrochemistry | Professor at University of Ulsan, South Korea

Prof. Junbom Kim is a distinguished professor of Chemical Engineering at the University of Ulsan, South Korea. With extensive expertise in fuel cells, hydrogen energy, and battery thermal management, he has made significant contributions to the field of energy technology. Holding a Ph.D. from Texas A&M University, he has been instrumental in advancing clean energy solutions. Prof. Kim serves as the Chairperson of multiple prestigious committees, including the Carbon Neutral Technical Committee and the Presidential Advisory Council on Science and Technology (PACST). His leadership extends to organizations such as the Korea Hydrogen Industry Association and The Korean Electrochemical Society. Through his pioneering research, he has authored numerous impactful publications, focusing on PEM fuel cells and hydrogen-based energy systems. His work is pivotal in the global shift toward carbon neutrality and sustainable energy solutions.

Professional Profile :         

Scopus 

Summary of Suitability for Award:

Prof. Junbom Kim is a distinguished researcher in chemical engineering, hydrogen energy, and fuel cell technology, making him a highly suitable candidate for the “Best Researcher Award.” With a Ph.D. from Texas A&M University and extensive academic and industrial experience, he has significantly contributed to fuel cell development, hydrogen energy systems, and battery thermal management. His leadership roles in PACST, the Korea Hydrogen Industry Association, and The Korean Electrochemical Society demonstrate his influence in shaping national and global energy policies. Additionally, his numerous high-impact publications, awards, and advisory roles underscore his expertise and commitment to advancing sustainable and clean energy technologies. Prof. Junbom Kim’s groundbreaking research, leadership, and contributions to clean energy make him an exceptional candidate for the “Best Researcher Award.” His work not only advances scientific knowledge but also drives real-world applications in energy sustainability, fuel cells, and hydrogen technology, making a lasting impact on global energy solutions.

🎓Education:

Prof. Junbom Kim pursued his academic journey in Chemical Engineering, beginning with a Bachelor of Science (B.S.) degree from Yonsei University in 1984. He continued his studies at the same institution, earning a Master of Science (M.S.) in 1986, where he delved deeper into advanced chemical engineering principles. His passion for research and innovation led him to Texas A&M University, where he completed his Ph.D. in Chemical Engineering in 1992. During his doctoral studies, he specialized in energy conversion and electrochemical systems, laying the foundation for his future contributions to fuel cells and hydrogen technology. His education at these prestigious institutions equipped him with a strong theoretical and practical background in sustainable energy, electrochemical processes, and materials science. This extensive academic training has enabled him to become a leading researcher in hydrogen energy and battery thermal management, significantly impacting energy storage and fuel cell development worldwide.

🏢Work Experience: 

Prof. Junbom Kim has an extensive professional background in the field of energy and sustainability, holding leadership roles in key national and international organizations. He currently serves as the Chairperson of the Carbon Neutral Technical Committee within the Energy Division, where he oversees strategies to achieve carbon neutrality. Additionally, he is the Chairperson of the Energy & Environment Committee under the Presidential Advisory Council on Science and Technology (PACST), advising policymakers on sustainable energy solutions. His role as Director of the Korea Hydrogen Industry Association reflects his commitment to advancing hydrogen-based energy technologies. Furthermore, he has served as the Chairperson of PACST’s Energy and Resources Sub-Committee, shaping national energy policies. As the Chairperson of the Fuel Cell Division within The Korean Electrochemical Society, he promotes research in electrochemical energy conversion. His contributions to both academia and industry have significantly influenced the development of clean energy technologies.

🏅Awards: 

Prof. Junbom Kim has received numerous awards in recognition of his outstanding contributions to chemical engineering, energy sustainability, and hydrogen research. He was honored with the Distinguished Scientist Award by the Korean Electrochemical Society, acknowledging his groundbreaking work in electrochemical energy systems. His innovations in hydrogen-based energy earned him the Outstanding Research Contribution Award from the Korea Hydrogen Industry Association. The South Korean Government recognized his efforts in advancing carbon-neutral technologies with a Government Recognition for Carbon Neutral Research award. Additionally, he was presented with the Excellence in Energy Policy Advisory Award from PACST, highlighting his role in shaping national energy policies. His research has also been widely appreciated in academic circles, winning the Best Paper Award in Fuel Cell Research from the Applied Chemistry Engineering Journal. These prestigious accolades underscore his influence in the scientific community and his dedication to sustainable energy solutions.

🔬Research Focus:

Prof. Junbom Kim’s research is centered on PEM fuel cells, hydrogen energy, and battery thermal management, driving advancements in sustainable energy solutions. His work in proton exchange membrane fuel cells (PEMFCs) has led to innovations in fuel cell-powered transportation and stationary power generation, enhancing their efficiency and commercial viability. His hydrogen research focuses on production, storage, and utilization techniques, contributing to the global transition toward clean hydrogen energy as a fossil fuel alternative. Additionally, he explores battery thermal management to improve energy storage system efficiency, safety, and longevity, particularly in electric vehicles and grid storage applications. His research integrates electrochemical engineering, material science, and thermal analysis, pushing the boundaries of sustainable energy technology. Through his extensive studies and leadership in hydrogen and fuel cell research, Prof. Kim is playing a critical role in the development of next-generation energy storage and conversion technologies for a carbon-neutral future

Publication Top Notes:

Effect of Manifold Size on PEMFC Performance with Metal Foam Flow Field

Citations: 5

Modeling Residual Water in the Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell and Analyzing Performance Changes

Effect of Porous Flow Field on PEMFC Performance with Dead Ended Anode System

Self-pressurization Effect and PEMFC Performance Improvement Using Metal Foam Compression

A Numerical Study of Cathode Block and Air Flow Rate Effect on PEMFC Performance

Citations: 1

 

Assoc. Prof. Dr. ROSHAN NAZIR | Electrochemistry | Chemical Environmental Award

Assoc. Prof. Dr. ROSHAN NAZIR | Electrochemistry | Chemical Environmental Award

Assoc. Prof. Dr. ROSHAN NAZIR | Associate Professor at Department of Chemistry, Poornima University, Jaipur, Rajasthan, India

Dr. Roshan Nazir is a distinguished researcher in nanomaterials, electrocatalysis, and coordination chemistry, currently serving as an Assistant Professor at Guru Nanak Institute of Technology, Hyderabad. He has previously worked as a DST-SERB National Postdoctoral Fellow at IIT Delhi, Research Associate at IIT Kharagpur, and Postdoctoral Fellow at Bilkent University (Turkey) and Qatar University. His Ph.D. from BITS Pilani focused on metal and metal oxide nanoparticles for electrocatalysis. His groundbreaking research includes hydrogen and oxygen evolution reactions, CO₂ reduction, and photovoltaic applications. With several high-impact publications, he has significantly contributed to energy materials and catalysis. Dr. Nazir has also held key administrative roles, including IIC and R&D Coordinator, demonstrating leadership in academic research and innovation. His expertise, coupled with prestigious fellowships and awards, establishes him as a leading scientist in sustainable energy research.

Professional Profile :                       

Google Scholar

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Roshan Nazir is highly suitable for the “Chemical Environmental Award” due to his extensive research in nanomaterials, electrocatalysis, and sustainable energy applications. His work focuses on developing efficient and cost-effective catalysts for clean energy production, hydrogen evolution reactions (HER), oxygen evolution reactions (OER), and CO₂ reduction, which align with the principles of green chemistry and environmental sustainability. His contributions to renewable energy solutions, pollution mitigation, and the reduction of harmful industrial emissions make him an excellent candidate for this award. Dr. Nazir’s research also includes MXene-based catalysts for hydrogen energy, electrodeposited Cu₂O/ZnO heterojunctions for solar applications, and the use of transition metal catalysts in electrochemical reactions, all aimed at minimizing environmental impact. His work bridges fundamental chemistry and industrial applications, ensuring a cleaner and more sustainable future. His international postdoctoral fellowships, leadership in research projects, and high-impact publications further highlight his commitment to advancing environmentally friendly chemical technologies.

🎓Education:

Dr. Roshan Nazir earned his Doctor of Philosophy (Ph.D.) in Chemistry from Birla Institute of Technology and Science (BITS), Pilani, India (2013–2019). His research focused on the synthesis and characterization of metal and metal oxide nanoparticles for electrocatalytic oxygen and hydrogen evolution reactions. His thesis was submitted on May 17, 2018, and awarded on February 28, 2019. Prior to this, he completed his Master of Science (M.Sc.) in Chemistry from Jamia Millia Islamia, India (2010–2012), where he gained expertise in advanced inorganic, organic, and physical chemistry. His academic journey laid a strong foundation in nanomaterials, catalysis, and electrochemistry, which he further explored during his postdoctoral research. His academic excellence and deep understanding of materials chemistry have been instrumental in his contributions to electrocatalysis, hydrogen production, and sustainable energy solutions.

🏢Work Experience:

Dr. Roshan Nazir is currently an Assistant Professor at Guru Nanak Institute of Technology, Hyderabad, India, since October 2023. He has extensive postdoctoral experience, having worked as a DST-SERB National Postdoctoral Fellow (NPDF) at the Indian Institute of Technology (IIT) Delhi from 2022 to 2023. Prior to this, he was a Research Associate at the Department of Metallurgical and Materials Engineering, IIT Kharagpur (2020–2021), where he worked on cutting-edge materials research. He also held prestigious international positions, including a Postdoctoral Fellowship (TÜBİTAK) at Bilkent University, Ankara, Turkey (2019–2020) and a Postdoctoral Fellow (Industrial Project – Total) at Qatar University, Doha, Qatar (2018–2019). His vast experience spans nanomaterials, electrocatalysis, hydrogen energy, and renewable energy applications. His interdisciplinary expertise and research collaborations have significantly contributed to advancements in materials chemistry and sustainable energy.

🏅Awards: 

Dr. Roshan Nazir has received several prestigious fellowships and awards for his outstanding research contributions. He was awarded the DST-SERB National Postdoctoral Fellowship (NPDF), serving as the Principal Investigator (PI) of the project, which highlights his leadership in scientific research. He also received the TÜBİTAK Fellowship from Turkey, a highly competitive international postdoctoral fellowship, recognizing his expertise in materials chemistry and catalysis. During his Ph.D., he was a Junior Research Fellow (JRF) under a Department of Science and Technology (DST)-sponsored project, further demonstrating his early excellence in research. His work has been published in high-impact journals, and his contributions to electrocatalysis, hydrogen production, and nanomaterials synthesis have earned him international recognition. Additionally, his administrative roles, such as serving as the IIC and R&D Coordinator at Guru Nanak Institute of Technology, showcase his dedication to research and academic leadership.

🔬Research Focus:

Dr. Roshan Nazir’s research primarily focuses on the synthesis and characterization of metal and metal oxide nanoparticles for electrocatalysis, hydrogen evolution reactions (HER), and oxygen evolution reactions (OER). His work aims to develop highly efficient, cost-effective, and stable catalysts for sustainable energy applications. He has explored MXene-based catalysts for ecological hydrogen energy generation, investigated electrodeposited Cu2O/ZnO heterojunctions for photovoltaic applications, and studied gadolinium telluride for oxygen evolution and reduction reactions. His research extends to CO2 reduction, methanol oxidation, and nitro-compound reduction, contributing to green energy solutions. His expertise in galvanic exchange synthesis, electrocatalytic nitrogen reduction, and carbon nitride-supported catalysts has led to the development of innovative materials for energy conversion and storage. Through his work, he aims to bridge the gap between fundamental nanomaterials research and practical applications in renewable energy and sustainable chemistry.

Publication Top Notes:

Synthesis of Monometallic (Au and Pd) and Bimetallic (AuPd) Nanoparticles Using Carbon Nitride (C3N4) Quantum Dots via the Photochemical Route for …
Citations: 121
Ag2S/Ag Heterostructure: A Promising Electrocatalyst for the Hydrogen Evolution Reaction
Citations: 110
Construction of CuS/Au heterostructure through a simple photoreduction route for enhanced electrochemical hydrogen evolution and photocatalysis
Citations: 104
Decoration of MoS2 on g-C3N4 surface for efficient hydrogen evolution reaction
Citations: 88
Graphitic-carbon nitride support for the synthesis of shape-dependent ZnO and their application in visible light photocatalysts
Citations: 80
Decoration of carbon nitride surface with bimetallic nanoparticles (Ag/Pt, Ag/Pd, and Ag/Au) via galvanic exchange for hydrogen evolution reaction
Citations: 77
Decoration of Pd and Pt nanoparticles on a carbon nitride (C3N4) surface for nitro-compounds reduction and hydrogen evolution reaction
Citations: 55
Synthesis of one-dimensional RuO2 nanorod for hydrogen and oxygen evolution reaction: An efficient and stable electrocatalyst
Citations: 44
Development of CuAg/Cu2O nanoparticles on carbon nitride surface for methanol oxidation and selective conversion of carbon dioxide into formate
Citations: 37
Nanosheet Synthesis of Mixed Co3O4/CuO via Combustion Method for Methanol Oxidation and Carbon Dioxide Reduction
Citations: 29
Structural, optical and photocatalytic properties of PVC/CdS nanocomposites prepared by soft chemistry method
Citations: 27
Synthesis of hydroxide nanoparticles of Co/Cu on carbon nitride surface via galvanic exchange method for electrocatalytic CO2 reduction into formate
Citations: 20
Preparation of Sb:SnO2 thin films and its effect on optoelectrical properties
Citations: 18
Microwave‐Assisted Efficient Suzuki‐Miyaura Cross‐Coupling Reactions in Water Catalyzed by Nano‐Pd/gC3N4 Composite
Citations: 18
Preparation and properties of electrodeposited Ni-B-V2O5 composite coatings
Citations: 17

 

Shripad Patil | Material chemistry | Young Scientist Award

Dr. Shripad Patil | Material chemistry | Young Scientist Award 

 Doctorate at Aragen Life Science, Hyderabad, India

Dr. Shripad Mukundrao Patil is an accomplished scientist specializing in Organic Chemistry, currently serving as an Assistant Professor at Rayat Shikshan Sanstha’s Dada Patil Mahavidyalaya in Karjat, Maharashtra, India. With a Ph.D. from Lovely Professional University, Punjab, his research focuses on the synthesis and application of magnetically recyclable silica-coated nanoparticles in organic transformations. His career reflects a commitment to academic excellence and innovation in green chemistry methodologies, leveraging his expertise to advance sustainable practices in chemical synthesis.

Author Metrics

ORCID Profile

Google Scholar Profile

Dr. Patil has established a significant scholarly presence with 18 research papers published in prestigious journals indexed in Scopus and Web of Science. His publications have garnered a total of 156 citations, underscoring his impact in the field of Organic Chemistry. His work is characterized by its pioneering use of magnetically recyclable nanocatalysts, contributing to advancements in catalysis and environmental sustainability within the pharmaceutical and chemical industries.

Education

Dr. Patil’s academic journey includes a Ph.D. in Organic Chemistry from Lovely Professional University, Punjab, awarded in 2023. Prior to this, he completed his M.Sc. and B.Sc. in Organic Chemistry at Dada Patil College, Karjat, Pune. His educational background has equipped him with a solid foundation in theoretical and practical aspects of chemistry, essential for his subsequent research endeavors and teaching career.

Research Focus

Dr. Patil’s research is centered on the development and application of magnetically recyclable silica-coated nanoparticles as catalysts in organic transformations. His work aims to enhance the efficiency and sustainability of chemical processes by minimizing environmental impact and optimizing resource utilization. Through innovative synthesis methods and rigorous characterization techniques, he contributes to the advancement of green chemistry principles and their practical implementation in industrial settings.

Professional Journey

Dr. Patil’s professional journey encompasses diverse roles including Assistant Professor at Rayat Shikshan Sanstha’s Dada Patil Mahavidyalaya, Karjat. He has effectively taught a range of chemistry courses, mentored students in research, and actively participated in academic conferences and workshops globally. His commitment to research excellence and academic leadership is evident in his contributions to curriculum development and his role as a mentor to aspiring chemists.

Honors & Awards

Throughout his career, Dr. Patil has received recognition for his contributions to Organic Chemistry, including a Ph.D. Award from Lovely Professional University, Punjab. He has also secured funding through grants such as the Seed Money Grant from Dada Patil Mahavidyalaya, Karjat, underscoring his ability to attract support for innovative research initiatives. His international patent for a novel process involving silica-coated nanoparticles further highlights his impact and recognition within the scientific community.

Publications Noted & Contributions

Dr. Patil’s research publications have made notable contributions to the field, particularly in the area of magnetically recoverable nanocatalysts and their applications in organic synthesis. His papers have been published in esteemed journals like Royal Society of Chemistry Advances and American Chemical Society Omega, showcasing his expertise in designing sustainable catalytic systems and their practical implications for industrial chemistry.

Malic Acid as a Green Catalyst for the N-Boc Protection under Solvent-free Condition

  • Journal: Letters in Organic Chemistry, 2024
  • DOI: 10.2174/0115701786278928231218113855
  • Contributors: Ashok Pise; Shripad M. Patil; Ajit P. Ingale
  • Summary: This article explores the use of malic acid as an eco-friendly catalyst for the N-Boc protection of compounds under solvent-free conditions, highlighting Dr. Patil’s commitment to sustainable catalytic processes.

Magnetite-supported montmorillonite (K10) (nanocat-Fe-Si-K10): an efficient green catalyst for multicomponent synthesis of amidoalkyl naphthol

  • Journal: RSC Advances, 2023
  • DOI: 10.1039/D3RA01522J
  • Contributors: Shripad M. Patil; Runjhun Tandon; Nitin Tandon; Iqubal Singh; Ashwini Bedre; Vilas Gade
  • Summary: This publication focuses on magnetite-supported montmorillonite as a catalyst for the multicomponent synthesis of amidoalkyl naphthol, illustrating Dr. Patil’s research in developing efficient heterogeneous catalysts.

Novel Silica-coated Magnetic Nanoparticles and Their Synthetic Applications

  • Journal: Iranian Journal of Catalysis, 2023
  • DOI: 10.30495/ijc.2023.1998671.2054
  • Contributors: Shripad Patil
  • Summary: Dr. Patil’s solo-authored article discusses novel silica-coated magnetic nanoparticles and their applications in synthetic chemistry, emphasizing advancements in nanotechnology for catalytic purposes.

[EMIm][BH3CN] Ionic Liquid as an Efficient Catalyst for the Microwave-Assisted One-Pot Synthesis of Triaryl Imidazole Derivatives

  • Journal: Letters in Organic Chemistry, 2023
  • DOI: 10.2174/1570178620666230510122033
  • Contributors: Rajesh K. Manjul; Suresh T. Gaikwad; Vilas B. Gade; Anjali S. Rajbhoj; Manohar K. Jopale; Shripad M. Patil; Dhananjay N. Gaikwad; Dayanand M. Suryavanshi; Santosh P. Goskulwad; Suvarna D. Shinde
  • Summary: This collaborative effort highlights the use of an ionic liquid as a catalyst for the microwave-assisted synthesis of triaryl imidazole derivatives, showcasing Dr. Patil’s role in interdisciplinary research on innovative catalytic systems.

Recent Progress in Fe3O4 Nanoparticles and Their Green Applications in Organic Transformations

  • Journal: Iranian Journal of Catalysis, 2023
  • DOI: 10.30495/ijc.2023.1991397.2024
  • Contributors: Shripad Patil; Ashwini Bedre
  • Summary: This review article co-authored by Dr. Patil explores recent advancements in the use of Fe3O4 nanoparticles for green applications in organic transformations, providing a comprehensive overview of sustainable nanocatalysts.

These publications underscore Dr. Shripad M. Patil’s research prowess and contributions to the development of sustainable and efficient catalytic systems, enhancing the field of Organic Chemistry with innovative solutions for chemical synthesis.

Research Timeline

Dr. Patil’s research timeline spans from his doctoral studies at Lovely Professional University, Punjab, culminating in significant projects such as the development of magnetically recyclable nanocatalysts. His continuous engagement in research activities underscores his dedication to advancing knowledge in Organic Chemistry, focusing on novel catalyst design and application-driven research for sustainable chemical processes.

Collaborations and Projects

Dr. Patil actively collaborates with international researchers, including partnerships with institutions like King Saud University, Riyadh, Saudi Arabia. These collaborations have enriched his research endeavors, fostering cross-cultural exchange and innovative approaches to nanocatalyst development. His projects emphasize collaborative efforts aimed at addressing global challenges in chemistry through interdisciplinary research and technological innovation.

These paragraphs provide a detailed breakdown of Dr. Shripad Mukundrao Patil’s academic background, research focus, professional journey, honors, publications, and collaborative efforts, reflecting his contributions and achievements in Organic Chemistry.