Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon , Chemical Engineering ,Senior Scientist at CNRS/Laboratoire Rhéologie et Procédés, France

Frédéric Pignon is a Senior Scientist (Directeur de Recherche, DR1) at CNRS, affiliated with the Laboratoire Rhéologie et Procédés (LRP), UMR 5520, Grenoble, France.🇫🇷, he specializes in fluid mechanics and soft matter rheology. With over 25 years of expertise, Pignon has significantly contributed to the understanding of the multiscale structural behavior of anisotropic dispersions under various flow conditions. His pioneering development of in situ experimental setups has enabled novel insights into flow-structure relationships using SAXS, SANS, SALS, and ultrasound techniques. He holds an h-index of 32 📊, with 76 international publications, 2 patents, and numerous invited talks globally . Apart from research, he actively contributes to scientific evaluation committees and review panels including ANR, HCERES, and ESRF. His collaborations span leading institutions in Europe, North America, and Asia, positioning him as a key figure in advanced rheological material research.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Pignon holds a Ph.D. in Fluid Mechanics and Transfer (1997, Grenoble-INP), with prior DEA in the same field. His formal training is strongly aligned with his long-term research focus in rheology and multiscale fluid dynamics. He has published 76 peer-reviewed international journal papers, presented in 97 international conferences (including 8 invited talks), and holds 2 patents. His h-index of 32 demonstrates sustained impact in his field. His research uniquely combines rheometric properties with nanoscale-to-microscale structural characterization using advanced techniques such as SAXS, SALS, and optical methods. These contributions have significantly advanced the understanding of flow-induced behavior in complex fluids and materials. Dr. Frédéric Pignon’s pioneering research, prolific publication record, significant mentoring, leadership in scientific boards, and innovative patent contributions make him exceptionally well-qualified for the “Best Researcher Award”. His work bridges theoretical insight with experimental innovation in fluid mechanics and nanostructured systems, making a deep impact on science and industry alike. He is a model of scientific excellence and leadership.

🎓Education:

Frédéric Pignon pursued higher education in engineering and fluid mechanics in France. In 1993, he earned his D.E.A. (Diplôme d’Études Approfondies) in Fluid Mechanics and Transfer from Grenoble-INP, one of France’s premier engineering institutions 🎓. He deepened his specialization by completing a Ph.D. in Fluid Mechanics and Transfer at the same institution in January 1997, underlining his early interest in the microstructural behavior of complex fluids. His doctoral research laid the foundation for his later pioneering work in multiscale flow characterization. Pignon’s strong academic formation in physics, transport phenomena, and complex systems gave him a robust foundation to innovate in rheometry and structural analysis of soft matter systems. His academic path reflects a consistent focus on multidisciplinary approaches to fluid behavior, bridging physics, materials science, and applied engineering.

🏢Work Experience:

Frédéric Pignon has held leading research positions within the CNRS system for over two decades 🧪. Since October 2013, he serves as Senior Scientist (DR1) at CNRS-LRP, following a 14-year tenure (1999–2013) as Research Scientist (CR1). Earlier, he conducted postdoctoral research at ESRF’s ID28 Beamline (1999) and Laboratoire Rhéologie et Procédés (LRP) (1997–1998) 🔬. His research career is defined by designing cutting-edge experimental cells that integrate rheology with structural probes (SAXS/SANS/optical methods). He supervises Ph.D. students and postdoctoral researchers, participates actively in international collaborations, and leads major research projects across France and Europe. Pignon’s extensive academic and industrial network has facilitated groundbreaking studies on anisotropic particles, biopolymers, and colloids under dynamic conditions. He also contributes to scientific governance through involvement in evaluation panels (ESRF, ANR, HCERES), steering strategic research and innovation.

🏅Awards: 

Frédéric Pignon’s research excellence has been recognized through leadership roles, panel appointments, and competitive research funding . He is a long-standing member of the ESRF Review Committee (Panel C08) (2014–present) and served on France’s ANR CES 09 panel (2018). He also contributed to institutional evaluation through HCERES Committee vague C (2016–2017). As Co-PI of Labex Tec 21 (2013–2021) and scientific coordinator for Carnot PolyNat Institute projects, he has driven interdisciplinary research strategies. Pignon holds two patents, including one on thixotropic hydrogels and another on an ultrasound-enhanced filtration device 🔬. He has secured significant funding from national and regional sources (ANR, SATT, Région Bretagne), supervising several Ph.D. and postdoctoral projects. His work is frequently cited and referenced in the scientific community, and he is a regular reviewer for top-tier journals and national research proposals, having completed 83 international journal reviews and 7 ANR project reviews.

🔬Research Focus:

Frédéric Pignon’s research bridges rheology, soft matter physics, and multiscale characterization. His expertise lies in understanding how anisotropic particles—like cellulose nanocrystals and clay platelets—organize under flow, pressure, or acoustic fields. By developing custom in situ setups integrating rheometers with SAXS, SANS, birefringence, and SALS, he studies how microstructure impacts mechanical properties during dynamic processing. His group investigates orientation, aggregation, concentration polarization, and gelation in suspensions, particularly during cross-flow filtration and ultrasound exposure. He also explores bio-based nanomaterials and the physical behavior of hydrogels, enabling applications in biotechnology and green materials. Collaborating with synchrotron and neutron facilities, he probes structures from nanometer to micrometer scales. Projects like ANR ANISOFILM and Memus (SATT Linksium) showcase his role in advancing filtration, structural control, and nanocomposite design. His research is highly interdisciplinary, combining physics, chemistry, and process engineering.

Publication Top Notes:

1. Multi-scale investigation of the effect of photocurable polyethylene glycol diacrylate (PEGDA) on the self-assembly of cellulose nanocrystals (CNCs)

2. A self-cleaning biocatalytic membrane with adjusted polyphenol deposition for edible oil-water separation

3. A scalable and eco-friendly carbohydrate-based oleogelator for vitamin E controlled delivery

4. Orthotropic organization of a cellulose nanocrystal suspension realized via the combined action of frontal ultrafiltration and ultrasound as revealed by in situ SAXS

5. Viologen-based supramolecular crystal gels: gelation kinetics and sensitivity to temperature

6. Molecular mechanism of casein-chitosan fouling during microfiltration

7. Multiscale investigation of viscoelastic properties of aqueous solutions of sodium alginate and evaluation of their biocompatibility

8. Self-supported MOF/cellulose-nanocrystals materials designed from ultrafiltration

9. Orientation of Cellulose Nanocrystals Controlled in Perpendicular Directions by Combined Shear Flow and Ultrasound Waves Studied by Small-Angle X-ray Scattering

10. Effect of Polymer Length on the Adsorption onto Aluminogermanate Imogolite Nanotubes

Citations: 3​

11. Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS

 

Mrs. Ralitsa Uzunova | Physical Chemistry | Best Researcher Award

Mrs. Ralitsa Uzunova | Physical Chemistry | Best Researcher Award

Mrs. Ralitsa Uzunova | Physical Chemistry | PhD student/ Researcher at Department of Chemical and Pharmaceutical Engineering, sofia university, Bulgaria

Ralitsa Ivanova Uzunova is a dedicated Ph.D. student and researcher in the Department of Chemical and Pharmaceutical Engineering at Sofia University “St. Kliment Ohridski.” With a strong background in chemistry, she holds a Bachelor’s degree in “Chemistry” and a Master’s in “Medicinal Chemistry.” Over the past seven years, she has actively contributed to various research projects, particularly in surfactant solutions, interfacial tension, and adsorption studies. She has participated in 13 national and international conferences, delivering nine oral presentations, including at the prestigious 37th European Colloid and Interface Society Conference and the 19th European Student Colloid Conference. Her collaborations extend to industry giants like Unilever and S.C. Johnson, as well as the National Science Fund of Bulgaria. Ralitsa’s work focuses on understanding volatile molecules’ adsorption-desorption mechanisms, which are crucial in cosmetics, household products, and pharmaceuticals. Her dedication to research has led to two indexed journal publications, benefiting the broader scientific community.

Professional Profile :         

Orcid

Scopus  

Summary of Suitability for Award:

Ralitsa Ivanova Uzunova is an emerging researcher in the field of Chemical and Pharmaceutical Engineering, specializing in surface chemistry, interfacial tension, and adsorption phenomena. With a strong academic background (Bachelor’s in Chemistry and Master’s in Medicinal Chemistry), she has gained seven years of research experience at Sofia University “St. Kliment Ohridski.” Her participation in eight research projects, two indexed journal publications, and four industry collaborations with Unilever, S. C. Johnson, and others demonstrate her contribution to applied research. Additionally, her active engagement in national and international conferences (including the 37th European Colloid and Interface Society Conference) highlights her role in scientific dissemination. Her work on volatile molecules used in cosmetics and household formulations has both theoretical significance and industrial application, aligning well with the criteria for excellence in research. Ralitsa Ivanova Uzunova is a deserving candidate for the “Best Researcher Award”, given her multifaceted contributions to chemical engineering research, industrial collaborations, and scientific impact. Her interdisciplinary expertise in cosmetics, pharmaceuticals, and surface chemistry showcases her ability to bridge academia and industry, making her an ideal contender for this prestigious recognition.

🎓Education:

Ralitsa Ivanova Uzunova pursued her higher education in chemistry with a keen interest in interdisciplinary applications. She obtained her Bachelor’s degree in Chemistry from Sofia University “St. Kliment Ohridski,” where she built a strong foundation in chemical principles and analytical techniques. Following her undergraduate studies, she completed a Master’s degree in Medicinal Chemistry, focusing on bioactive compounds and their applications in pharmaceuticals and healthcare. Currently, she is pursuing a Ph.D. in Chemical and Pharmaceutical Engineering, specializing in surfactant solutions, interfacial tension, and adsorption phenomena. Throughout her academic journey, she has been actively engaged in research and has collaborated with industrial partners on multiple projects. Her educational background has equipped her with expertise in static and dynamic interfacial tension, cleaning mechanisms, and volatile molecule adsorption-desorption processes. Ralitsa continues to expand her knowledge through research collaborations, conference presentations, and scientific publications.

🏢Work Experience:

Ralitsa Ivanova Uzunova has amassed seven years of experience in research and academia while working in the Department of Chemical and Pharmaceutical Engineering at Sofia University. Her expertise spans static and dynamic interfacial tension, surfactant solutions, and oil drop attachment/detachment studies. She has contributed to eight research projects, collaborating with industry leaders such as Unilever, S. C. Johnson, and the National Science Fund of Bulgaria. Additionally, she has been involved in four consultancy/industry projects, applying her knowledge to real-world challenges in cosmetics and household chemistry. Ralitsa has actively participated in 13 national and international conferences, delivering nine oral presentations, including at prestigious European colloid conferences. Her research has resulted in two indexed journal publications, contributing valuable insights into volatile molecule interactions. Her work is instrumental in developing formulations for personal care and industrial applications, bridging the gap between scientific research and industrial needs.

🏅Awards: 

Ralitsa Ivanova Uzunova has been recognized for her exceptional contributions to the field of chemical and pharmaceutical engineering. She has received multiple accolades for her oral presentations at international conferences, particularly at the 37th European Colloid and Interface Society Conference and the 19th European Student Colloid Conference, where her work on interfacial tension and surfactant solutions was highly appreciated. As a member of the Bulgarian Association of Cosmetologists, she has contributed significantly to research in cosmetics and household chemistry. Her research collaborations with Unilever and S. C. Johnson have also been acknowledged for their impact on industrial formulations. Additionally, her involvement in National Science Fund of Bulgaria projects has played a crucial role in advancing knowledge in volatile molecule adsorption-desorption mechanisms. Ralitsa is currently nominated for the Best Researcher Award, recognizing her dedication to scientific excellence and innovation in colloid and interface science.

🔬Research Focus:

Ralitsa Ivanova Uzunova’s research focuses on static and dynamic interfacial tension, surfactant solutions, and volatile molecule interactions. Her work explores the bulk properties and adsorption behaviors of surfactants, which are crucial in cleaning, cosmetics, and pharmaceutical applications. She investigates the attachment/detachment of oil drops, enhancing formulations for detergents, skincare, and industrial surfactants. A significant part of her research delves into volatile molecule adsorption and desorption at interfaces, examining compounds like menthol, geraniol, linalool, benzyl acetate, and citronellol, widely used in personal care products and medicine. Her studies provide critical insights into optimizing formulations for enhanced stability, efficiency, and sustainability. Through collaborations with Unilever, S. C. Johnson, and the National Science Fund of Bulgaria, she applies her findings to industrial applications. Her work contributes to improving product performance, environmental sustainability, and the development of novel surfactant-based systems, making significant advancements in colloid and interface science.

Publication Top Notes:

“Quantitative characterization of the mass transfer of volatile amphiphiles between vapor and aqueous phases: Experiment vs theory”

“Kinetics of transfer of volatile amphiphiles (fragrances) from vapors to aqueous drops and vice versa: Interplay of diffusion and barrier mechanisms”