Dr. Faranak Hatami | Computational Chemistry | Best Researcher Award

Dr. Faranak Hatami | Computational Chemistry | Best Researcher Award

Dr. Faranak Hatami , Computational Chemistry , PhD at University of massachuessetes Lowell, United States

Faranak Hatami (Fara) is a dedicated physicist and researcher specializing in molecular dynamics simulations, machine learning, and nuclear materials science. Currently pursuing her Ph.D. in Physics at the University of Massachusetts Lowell, she focuses on transport property analysis and multi-objective optimization for molecular systems like Tri-Butyl-Phosphate (TBP). Faranak holds two master’s degrees—one in Physics from UMASS Lowell, where she explored force fields for TBP, and another in Nuclear Engineering from Shahid Beheshti University, where she investigated radiation damage in metals. With a robust background in computational physics, AI, and advanced simulation tools, she has authored multiple publications across nuclear materials and computational chemistry. Her teaching experience spans both the U.S. and Iran, reflecting her passion for education. Beyond academia, she completed a research internship at the University of Montreal. Faranak’s work bridges fundamental physics and practical applications, contributing innovative insights to the fields of material science and chemical engineering.

Professional Profile : 

Google Scholar 

Summary of Suitability for Award:

Faranak Hatami is a highly suitable candidate for a “Best Researcher Award”. She demonstrates exceptional multidisciplinary expertise spanning physics, molecular dynamics, machine learning, and nuclear materials science. Her Ph.D. work at UMASS Lowell innovatively combines atomic-scale simulations with AI to optimize force field parameters for Tri-Butyl-Phosphate, addressing both fundamental science and practical applications.  She has authored several impactful publications in reputable journals and preprints, covering diverse topics from radiation damage in metals to machine learning models predicting thermodynamic properties. Her research portfolio includes complex computational modeling, multi-objective optimization, and advanced materials analysis. Additionally, Faranak’s teaching record and successful research internship in Canada reflect her commitment to knowledge dissemination and international collaboration. Her ability to merge computational physics with machine learning showcases originality and forward-thinking, key attributes for top research honors. Faranak Hatami embodies the qualities of a best researcher: scientific rigor, innovative thinking, multidisciplinary skillset, and impactful publications. Her contributions significantly advance computational methods in physical sciences and engineering, making her a strong and deserving candidate for a “Best Researcher Award”.

🎓Education:

 Faranak Hatami is completing her Ph.D. in Physics at the University of Massachusetts Lowell (2021–2025), with her thesis focused on transport property analysis and optimization of force field parameters for Tri-Butyl-Phosphate (TBP), combining atomic-scale simulations with machine learning. Prior to this, she earned her M.Sc. in Physics from the same university in 2023, where she conducted a comparative study of force fields for liquid TBP using molecular dynamics. Earlier, she obtained her M.Sc. in Nuclear Engineering from Shahid Beheshti University in Iran (2016), where she examined radiation damage effects on zirconium and iron grain boundaries through simulations. Her academic journey began with a B.S. in Electrical Engineering from Kurdistan University in 2013. Throughout her studies, Faranak has integrated advanced computational methods, AI, and experimental data analysis, building a multidisciplinary foundation that connects physics, materials science, and engineering disciplines.

🏢Work Experience:

Faranak Hatami brings diverse experience across research, teaching, and technical projects. At UMASS Lowell, she serves as a Teaching Assistant in Physics while pursuing her Ph.D., guiding students through complex concepts. Previously, she lectured on Computational Methods and Statistical Methods and Physics courses at Shahid Beheshti University between 2014 and 2018. Her research career includes an internship at the University of Montreal (2019–2021), exploring hydrogen’s effects on iron grain boundaries using the kinetic activation relaxation technique (k-ART). Faranak has led significant academic projects spanning molecular dynamics simulations, multi-objective optimization, and machine learning applications in material science. She has deep expertise in computational tools such as LAMMPS, MCNP, VASP, and Python-based AI frameworks. Her work reflects a unique blend of fundamental physics research, practical problem-solving, and advanced data analysis, contributing to fields like chemical engineering, nuclear materials, and computational modeling.

🏅Awards: 

 Faranak Hatami has built an impressive research portfolio during her academic career, reflected in multiple publications and conference presentations. While specific named awards were not explicitly listed in her profile, her contributions have earned her recognition through invited presentations such as at the AIChE Annual Meeting, showcasing her expertise in molecular dynamics simulations and force field optimization. Completing dual M.Sc. degrees in Physics and Nuclear Engineering highlights her dedication and academic excellence. Her selection as a research intern at the University of Montreal, working on advanced computational studies in materials science, further underscores her capability and esteem in her field. Through her multidisciplinary approach integrating AI, molecular modeling, and nuclear materials science, she stands out as a rising scholar contributing valuable insights to computational physics and chemical engineering. As she advances her Ph.D., she is poised for further accolades in research innovation and scientific community engagement.

🔬Research Focus:

 Faranak Hatami focuses her research on the intersection of molecular dynamics simulations, machine learning, and materials science. Her Ph.D. work centers on analyzing transport properties and optimizing force field parameters for Tri-Butyl-Phosphate (TBP) using multi-objective optimization algorithms like NSGA-II/III. She applies molecular dynamics to predict critical thermodynamic and transport properties, integrating neural networks for parameter tuning. Additionally, she explores AI-based classification of microscopy and atomic-scale images, blending physics with cutting-edge data science. Faranak’s earlier research in nuclear engineering examined radiation damage in metals such as zirconium and nickel, utilizing techniques like climbing image nudged elastic band (CI-NEB) for defect analysis. She’s also investigated hydration free energies, grain boundary behaviors, and primary knock-on atom (PKA) spectra in irradiated materials. Her work bridges computational physics with practical engineering challenges, advancing predictive models and simulation methods to better understand complex molecular and material systems.

Publication Top Notes:

Comparative Analysis of Machine Learning Models for Predicting Viscosity in Tri-n-Butyl Phosphate Mixtures Using Experimental Data

Citations: 6

Quantification of Methane Hydration Energy Through Free Energy Perturbation Method

Comparison of Different Machine Learning Approaches to Predict Viscosity of Tri-n-Butyl Phosphate Mixtures Using Experimental Data

Citations: 3

Properties of Tri-Butyl-Phosphate from Polarizable Force Field MD Simulations

Citations: 1

A Revision of Classical Force Fields for Tri-N-Butyl Phosphate Molecular Dynamics Simulations

Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study

Citations: 34

An energetic and kinetic investigation of the role of different atomic grain boundaries in healing radiation damage in nickel

Citations: 31

Prof. Dr. Alexander Zakharov | Computational Chemistry | Best Researcher Award

Prof. Dr. Alexander Zakharov | Computational Chemistry | Best Researcher Award

Prof. Dr. Alexander Zakharov , Institute of Problems of Mechanical Science, RAS , Russia

Dr. Alexandre V. Zakharov is a distinguished Russian physicist specializing in molecular physics, hydrodynamics, and lubrication science. He is the Head of the Hydrodynamics of Liquid Crystals Laboratory at the St. Petersburg Institute for Machine Sciences, Russian Academy of Sciences. With a research career spanning over four decades, he has contributed extensively to theoretical and applied physics. His expertise has led him to numerous international collaborations, including positions as a visiting professor in Japan, Canada, Italy, and Sweden. He has authored numerous scientific publications and played a pivotal role in advancing the understanding of liquid crystal hydrodynamics and lubrication phenomena. His contributions have been recognized worldwide, and he remains an influential figure in molecular and mathematical physics.

Professional Profile:

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Alexandre V. Zakharov is a highly accomplished physicist with a distinguished career spanning over four decades in molecular physics, liquid crystal hydrodynamics, tribology, and nanodevice engineering. His groundbreaking contributions to fluid dynamics, lubrication science, and computational modeling have significantly influenced both theoretical and applied physics. His Habilitation Doctorate in Molecular Physics  and Ph.D. in Theoretical and Mathematical Physics (1983) demonstrate his deep academic expertise. Dr. Zakharov’s exceptional research contributions, international collaborations, leadership roles, and impact on multiple scientific domains make him a highly suitable nominee for the Best Researcher Award. His expertise in fluid dynamics, computational modeling, and nanophysics has significantly advanced scientific knowledge and practical applications. Given his outstanding achievements, he is a strong candidate for this prestigious honour.

🎓Education:

Dr. Alexandre V. Zakharov holds a Habilitation Doctorate in Molecular Physics, awarded in 1992 by the Higher Attestation Commission of the USSR. He earned his Ph.D. in Theoretical and Mathematical Physics from Byelorussian State University in 1983, under the guidance of Profs. L.A. Rott and E.T. Brook-Levinson. His doctoral research laid the foundation for his future contributions to molecular and mathematical physics. He completed his Master’s degree in Mathematical Physics at Leningrad State University in 1974 after studying there from 1969 to 1974. His strong mathematical background provided him with a rigorous framework to explore fluid dynamics, liquid crystal physics, and tribology. Throughout his academic career, he has integrated theoretical models with experimental data, shaping the development of nanophysics and lubrication science. His education has played a crucial role in his contributions to physics, particularly in hydrodynamics, photonics, and computational modeling.

🏢Work Experience:

Dr. Zakharov has over four decades of experience in molecular physics and hydrodynamics. Since 2009, he has served as Head of the Hydrodynamics of Liquid Crystals Laboratory at the St. Petersburg Institute for Machine Sciences, Russian Academy of Sciences. Before this, he was a Leading Researcher (1995-2009) and Senior Researcher (1986-1995) in the Microwear and Lubrication Laboratory at the same institute. His career also includes roles as a Senior Researcher at the Medical Institute in Minsk (1985-1986) and a Junior Researcher at the Heat and Mass Transfer Institute of the BSSR Academy of Sciences (1974-1984). He has also held numerous international visiting professorships in Japan, Canada, Italy, Turkey, and Sweden. His global experience has significantly contributed to advancements in lubrication science, tribology, and liquid crystal hydrodynamics, reinforcing his position as a leading figure in theoretical and applied physics.

🏅Awards: 

Dr. Zakharov has received numerous accolades for his contributions to physics. He was awarded multiple research grants by the Japan Society for the Promotion of Science (JSPS) and the COE “Photonics Nanodevice Integration Engineering” for his collaborative work at Tokyo Institute of Technology. The Cariplo Foundation and NATO grants supported his research at the University of Pavia, Italy. He also held a Senior Research Fellowship at KU Leuven, Belgium (2002-2004) and a two-year Visiting Professorship at Brandon University, Canada. His pioneering work on liquid crystal hydrodynamics, lubrication science, and photonics has earned him recognition in the global scientific community. His involvement in international collaborations has strengthened research ties across continents, making significant contributions to computational physics, tribology, and nanoscale engineering. These honors underscore his impact on advancing molecular physics and interdisciplinary research in fluid dynamics and materials science.

🔬Research Focus:

Dr. Zakharov’s research spans multiple interdisciplinary domains, including hydrodynamics of liquid crystals, tribology, nanodevice engineering, and mathematical physics. His work in molecular physics and lubrication science has advanced the understanding of fluid dynamics at the nanoscale. He specializes in microwear phenomena, studying the effects of lubrication and friction at microscopic levels to improve mechanical efficiency. His expertise in photonics and nanodevice integration contributes to the development of next-generation materials and optical devices. He has also conducted groundbreaking research in viscoelastic properties of complex fluids, providing theoretical and computational models for practical applications in material science. His mathematical modeling has been instrumental in describing nonlinear effects in liquid crystals, bridging theoretical predictions with experimental findings. His research continues to influence nanotechnology, physics, and mechanical engineering, driving innovations in computational simulations, material properties, and tribological applications.

Publication Top Notes:

Laser-driven nematic flow in microfluidic devices

Authors: Izabela Śliwa, Pavel V. Maslennikov, Dmitrii P. Shcherbinin, and Alex V. Zakharov

Journal: Physical Review E

Publication Date: December 24, 2024

DOI: 10.1103/PhysRevE.110.064702

Citations: As of now, there are no citations listed for this publication.

Anchoring transitions in thin liquid crystal films as seen from a mean-force potentials approach

Authors: Not specified in the available sources.

Journal: Physical Review E

Publication Date: December 17, 2024

DOI: 10.1103/PhysRevE.110.064701

Citations: As of now, there are no citations listed for this publication.

Paired correlations of dipolar liquid crystals: A mean-force-potentials approach

Authors: Not specified in the available sources.

Journal: Physical Review E

Publication Date: November 7, 2024

DOI: 10.1103/PhysRevE.110.054702

Citations: As of now, there are no citations listed for this publication.

MD simulations of diffusion of cyanobiphenyl molecules adsorbed on the graphene surface coated with alkane and alcohol molecules

Authors: Not specified in the available sources.

Journal: Journal of Physical Organic Chemistry

Publication Date: September 2024

DOI: 10.1002/poc.4640

Citations: As of now, there are no citations listed for this publication.

Features of director reorientation in a thin nematic film under the influence of crossed electric and magnetic fields

Authors: Not specified in the available sources.

Journal: Physical Review E

Publication Date: April 26, 2024

DOI: 10.1103/PhysRevE.109.044704

Citations: As of now, there are no citations listed for this publication.

Water/organic liquid interface properties with amine, carboxyl, thiol, and methyl terminal groups as seen from MD simulations

Authors: Not specified in the available sources.

Journal: Journal of Computational Chemistry

Publication Date: December 5, 2023

DOI: 10.1002/jcc.27205

Citations: As of now, there are no citations listed for this publication.

Electrically Driven Kink-Like Distortion Waves in Liquid Crystals

Authors: Not specified in the available sources.

Journal: Liquid Crystals and their Application

Publication Date: September 29, 2023

DOI: 10.18083/LCAppl.2023.3.46

Citations: As of now, there are no citations listed for this publication.

Electrically driven kinklike distorting waves in microsized liquid crystals

Authors: Not specified in the available sources.

Journal: Physical Review E

Publication Date: September 27, 2023

DOI: 10.1103/PhysRevE.108.034703

Citations: As of now, there are no citations listed for this publication.

Photo-Induced Relief in Rheology of Liquid Crystals

Authors: Not specified in the available sources.

Journal: Symmetry

Publication Date: March 14, 2023

DOI: 10.3390/sym15030722

Citations: As of now, there are no citations listed for this publication.

Vortex Dynamics in a Hybrid Aligned Nematic Microvolume with an Orientational Defect

Authors: Not specified in the available sources.

Journal: Symmetry

Publication Date: January 23, 2023

DOI: 10.3390/sym15020324

Citations: As of now, there are no citations listed for this publication.