Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon | Chemical Engineering | Best Researcher Award

Mr. Frédéric Pignon , Chemical Engineering ,Senior Scientist at CNRS/Laboratoire Rhéologie et Procédés, France

Frédéric Pignon is a Senior Scientist (Directeur de Recherche, DR1) at CNRS, affiliated with the Laboratoire Rhéologie et Procédés (LRP), UMR 5520, Grenoble, France.🇫🇷, he specializes in fluid mechanics and soft matter rheology. With over 25 years of expertise, Pignon has significantly contributed to the understanding of the multiscale structural behavior of anisotropic dispersions under various flow conditions. His pioneering development of in situ experimental setups has enabled novel insights into flow-structure relationships using SAXS, SANS, SALS, and ultrasound techniques. He holds an h-index of 32 📊, with 76 international publications, 2 patents, and numerous invited talks globally . Apart from research, he actively contributes to scientific evaluation committees and review panels including ANR, HCERES, and ESRF. His collaborations span leading institutions in Europe, North America, and Asia, positioning him as a key figure in advanced rheological material research.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Pignon holds a Ph.D. in Fluid Mechanics and Transfer (1997, Grenoble-INP), with prior DEA in the same field. His formal training is strongly aligned with his long-term research focus in rheology and multiscale fluid dynamics. He has published 76 peer-reviewed international journal papers, presented in 97 international conferences (including 8 invited talks), and holds 2 patents. His h-index of 32 demonstrates sustained impact in his field. His research uniquely combines rheometric properties with nanoscale-to-microscale structural characterization using advanced techniques such as SAXS, SALS, and optical methods. These contributions have significantly advanced the understanding of flow-induced behavior in complex fluids and materials. Dr. Frédéric Pignon’s pioneering research, prolific publication record, significant mentoring, leadership in scientific boards, and innovative patent contributions make him exceptionally well-qualified for the “Best Researcher Award”. His work bridges theoretical insight with experimental innovation in fluid mechanics and nanostructured systems, making a deep impact on science and industry alike. He is a model of scientific excellence and leadership.

🎓Education:

Frédéric Pignon pursued higher education in engineering and fluid mechanics in France. In 1993, he earned his D.E.A. (Diplôme d’Études Approfondies) in Fluid Mechanics and Transfer from Grenoble-INP, one of France’s premier engineering institutions 🎓. He deepened his specialization by completing a Ph.D. in Fluid Mechanics and Transfer at the same institution in January 1997, underlining his early interest in the microstructural behavior of complex fluids. His doctoral research laid the foundation for his later pioneering work in multiscale flow characterization. Pignon’s strong academic formation in physics, transport phenomena, and complex systems gave him a robust foundation to innovate in rheometry and structural analysis of soft matter systems. His academic path reflects a consistent focus on multidisciplinary approaches to fluid behavior, bridging physics, materials science, and applied engineering.

🏢Work Experience:

Frédéric Pignon has held leading research positions within the CNRS system for over two decades 🧪. Since October 2013, he serves as Senior Scientist (DR1) at CNRS-LRP, following a 14-year tenure (1999–2013) as Research Scientist (CR1). Earlier, he conducted postdoctoral research at ESRF’s ID28 Beamline (1999) and Laboratoire Rhéologie et Procédés (LRP) (1997–1998) 🔬. His research career is defined by designing cutting-edge experimental cells that integrate rheology with structural probes (SAXS/SANS/optical methods). He supervises Ph.D. students and postdoctoral researchers, participates actively in international collaborations, and leads major research projects across France and Europe. Pignon’s extensive academic and industrial network has facilitated groundbreaking studies on anisotropic particles, biopolymers, and colloids under dynamic conditions. He also contributes to scientific governance through involvement in evaluation panels (ESRF, ANR, HCERES), steering strategic research and innovation.

🏅Awards: 

Frédéric Pignon’s research excellence has been recognized through leadership roles, panel appointments, and competitive research funding . He is a long-standing member of the ESRF Review Committee (Panel C08) (2014–present) and served on France’s ANR CES 09 panel (2018). He also contributed to institutional evaluation through HCERES Committee vague C (2016–2017). As Co-PI of Labex Tec 21 (2013–2021) and scientific coordinator for Carnot PolyNat Institute projects, he has driven interdisciplinary research strategies. Pignon holds two patents, including one on thixotropic hydrogels and another on an ultrasound-enhanced filtration device 🔬. He has secured significant funding from national and regional sources (ANR, SATT, Région Bretagne), supervising several Ph.D. and postdoctoral projects. His work is frequently cited and referenced in the scientific community, and he is a regular reviewer for top-tier journals and national research proposals, having completed 83 international journal reviews and 7 ANR project reviews.

🔬Research Focus:

Frédéric Pignon’s research bridges rheology, soft matter physics, and multiscale characterization. His expertise lies in understanding how anisotropic particles—like cellulose nanocrystals and clay platelets—organize under flow, pressure, or acoustic fields. By developing custom in situ setups integrating rheometers with SAXS, SANS, birefringence, and SALS, he studies how microstructure impacts mechanical properties during dynamic processing. His group investigates orientation, aggregation, concentration polarization, and gelation in suspensions, particularly during cross-flow filtration and ultrasound exposure. He also explores bio-based nanomaterials and the physical behavior of hydrogels, enabling applications in biotechnology and green materials. Collaborating with synchrotron and neutron facilities, he probes structures from nanometer to micrometer scales. Projects like ANR ANISOFILM and Memus (SATT Linksium) showcase his role in advancing filtration, structural control, and nanocomposite design. His research is highly interdisciplinary, combining physics, chemistry, and process engineering.

Publication Top Notes:

1. Multi-scale investigation of the effect of photocurable polyethylene glycol diacrylate (PEGDA) on the self-assembly of cellulose nanocrystals (CNCs)

2. A self-cleaning biocatalytic membrane with adjusted polyphenol deposition for edible oil-water separation

3. A scalable and eco-friendly carbohydrate-based oleogelator for vitamin E controlled delivery

4. Orthotropic organization of a cellulose nanocrystal suspension realized via the combined action of frontal ultrafiltration and ultrasound as revealed by in situ SAXS

5. Viologen-based supramolecular crystal gels: gelation kinetics and sensitivity to temperature

6. Molecular mechanism of casein-chitosan fouling during microfiltration

7. Multiscale investigation of viscoelastic properties of aqueous solutions of sodium alginate and evaluation of their biocompatibility

8. Self-supported MOF/cellulose-nanocrystals materials designed from ultrafiltration

9. Orientation of Cellulose Nanocrystals Controlled in Perpendicular Directions by Combined Shear Flow and Ultrasound Waves Studied by Small-Angle X-ray Scattering

10. Effect of Polymer Length on the Adsorption onto Aluminogermanate Imogolite Nanotubes

Citations: 3​

11. Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS