Assoc. Prof. Dr. Dongmei Wang | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Dongmei Wang | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Dongmei Wang , Inorganic Chemistry , Associate professor at Zhejiang Normal University, China 

Dr. Dongmei Wang is an accomplished researcher and academic in the field of materials chemistry. She earned her Ph.D. from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry, Jilin University in 2016. Following her graduation, she joined the College of Chemistry and Materials Sciences at Zhejiang Normal University. In recognition of her academic contributions, she was promoted to Associate Professor and Master Supervisor in 2020. Dr. Wang has led several funded research projects, including those supported by the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province. Her scholarly output includes over 30 papers published in SCI-indexed journals. Her primary research interests lie in the synthesis and assembly of porous metal-organic frameworks (MOFs), particularly for applications in gas adsorption and separation. With a growing reputation in her field, Dr. Wang continues to contribute meaningfully to both fundamental research and applied science.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Dongmei Wang is a highly qualified and emerging researcher in the field of inorganic chemistry and materials chemistry, with a focused specialization in metal-organic frameworks (MOFs) and their application in gas adsorption and separation. Her academic journey began with a Ph.D. from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry, Jilin University, a nationally recognized center of excellence. Since joining Zhejiang Normal University in 2016, she has demonstrated rapid academic growth, attaining the position of Associate Professor and Master’s Supervisor by 2020. In conclusion, Dr. Dongmei Wang possesses the essential qualifications, research accomplishments, and societal relevance to be considered a strong candidate for the “Best Researcher Award.” Her early-career recognition through competitive grants, publication record, and rapid academic promotion all point to a dynamic and impactful scientific career. She is particularly suitable for this award in the emerging researcher or mid-career scientist category, and her contributions to environmentally significant applications further enhance her case.

🎓Education:

Dr. Dongmei Wang received her doctoral degree in 2016 from the State Key Laboratory of Inorganic Synthesis and Preparation Chemistry at Jilin University, one of China’s premier research institutions in the chemical sciences. Her Ph.D. work focused on the synthesis, design, and functionality of advanced inorganic and coordination materials. During her doctoral studies, she received rigorous training in the field of inorganic chemistry, especially in the design of metal-organic frameworks (MOFs) with controlled porosity and tailored functionalities. Her academic journey laid a solid foundation for her current research on porous materials and their environmental applications. Prior to her doctoral studies, she completed her undergraduate and possibly master’s studies (not specified) in related disciplines, which cultivated her passion for materials science. The comprehensive academic training she received equipped her with the theoretical knowledge and experimental skills necessary for her current research and teaching roles.

🏢Work Experience:

Dr. Dongmei Wang began her professional academic career in 2016 when she joined the College of Chemistry and Materials Sciences at Zhejiang Normal University as a faculty member. Within just four years, in 2020, she was promoted to the position of Associate Professor and Master Supervisor, acknowledging her contributions to both research and mentorship. At Zhejiang Normal University, she is actively involved in teaching undergraduate and postgraduate courses, supervising graduate students, and conducting independent research in materials chemistry. She has taken a leading role in managing research projects funded by both national and provincial foundations. Her expertise in metal-organic frameworks (MOFs) has positioned her as a recognized scientist in the field of porous materials. Throughout her career, Dr. Wang has demonstrated a commitment to academic excellence, fostering innovation, and mentoring the next generation of scientists. Her academic journey showcases a steady and impactful progression in both research and teaching.

🏅Awards: 

Dr. Dongmei Wang has received several accolades and research grants that underscore her excellence in scientific research and academic leadership. Notably, she has been the principal investigator for a Youth Project of the National Natural Science Foundation of China (NSFC)—a prestigious funding scheme supporting promising early-career scientists. She has also successfully led a project supported by the Natural Science Foundation of Zhejiang Province, highlighting regional recognition of her work. These competitive grants are awarded based on scientific merit and innovation potential, affirming the quality and relevance of her research. While specific honorary titles or awards are not detailed, her rapid promotion to Associate Professor and her role as a Master’s Supervisor by 2020 speak volumes about her scholarly reputation. Her publications in SCI-indexed journals further support her status as an influential researcher in porous materials and MOF chemistry.

🔬Research Focus:

Dr. Dongmei Wang’s research is centered on the design, synthesis, and functionalization of porous metal-organic frameworks (MOFs). These materials, known for their high surface areas, tunable porosity, and chemical versatility, are investigated for various applications under her supervision. A key area of interest in her lab is the application of MOFs in gas adsorption and separation, addressing urgent environmental and industrial challenges such as CO₂ capture, hydrogen storage, and selective gas separation. Her approach involves rational ligand and metal-node design to tailor the structural and adsorption properties of the frameworks. Additionally, Dr. Wang is exploring hybrid materials that combine MOFs with polymers or nanoparticles to improve stability and performance under real-world conditions. Her interdisciplinary research draws upon principles of inorganic chemistry, materials science, and environmental engineering, and aims to contribute to the development of sustainable and high-efficiency gas capture technologies.

Publication Top Notes:

1. Precipitation Conversion Induced Enhancement of Enzyme-Like Activity of Diatomite Supported Ag₂S Nanoparticles for Selective Hg(II) Detection via Colorimetric Signal Amplification

2. In Situ Production of Single-Cell Protein in Microbial Electrochemical Systems via Controlling the Operation and CO₂ Addition

3. Progress of MOFs Composites in the Field of Microwave Absorption

4. Reticular Chemistry Guided Function Customization: A Case Study of Constructing Low-Polarity Channels for Efficient C₃H₆/C₂H₄ Separation

5. Metal-Organic Framework with Polar Pore Surface Designed for Purification of Both Natural Gas and Ethylene

6. Revealing the Iceberg Beneath: A Merge-Net Approach for Designing Multicomponent Reticular Solids

7. Biomimetic Mineralization Synthesis of Tricobalt Tetraoxide/Nitrogen Doped Carbon Skeleton for Enhanced Capacitive Deionization

8. Assembly of Solvent-Incorporated Rod Secondary Building Units to Ultramicroporous Metal-Organic Frameworks for Acetylene Purification

 

 

Prof. Dr. Alexander Zakharov | Computational Chemistry | Best Researcher Award

Prof. Dr. Alexander Zakharov | Computational Chemistry | Best Researcher Award

Prof. Dr. Alexander Zakharov , Institute of Problems of Mechanical Science, RAS , Russia

Dr. Alexandre V. Zakharov is a distinguished Russian physicist specializing in molecular physics, hydrodynamics, and lubrication science. He is the Head of the Hydrodynamics of Liquid Crystals Laboratory at the St. Petersburg Institute for Machine Sciences, Russian Academy of Sciences. With a research career spanning over four decades, he has contributed extensively to theoretical and applied physics. His expertise has led him to numerous international collaborations, including positions as a visiting professor in Japan, Canada, Italy, and Sweden. He has authored numerous scientific publications and played a pivotal role in advancing the understanding of liquid crystal hydrodynamics and lubrication phenomena. His contributions have been recognized worldwide, and he remains an influential figure in molecular and mathematical physics.

Professional Profile:

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Alexandre V. Zakharov is a highly accomplished physicist with a distinguished career spanning over four decades in molecular physics, liquid crystal hydrodynamics, tribology, and nanodevice engineering. His groundbreaking contributions to fluid dynamics, lubrication science, and computational modeling have significantly influenced both theoretical and applied physics. His Habilitation Doctorate in Molecular Physics  and Ph.D. in Theoretical and Mathematical Physics (1983) demonstrate his deep academic expertise. Dr. Zakharov’s exceptional research contributions, international collaborations, leadership roles, and impact on multiple scientific domains make him a highly suitable nominee for the Best Researcher Award. His expertise in fluid dynamics, computational modeling, and nanophysics has significantly advanced scientific knowledge and practical applications. Given his outstanding achievements, he is a strong candidate for this prestigious honour.

🎓Education:

Dr. Alexandre V. Zakharov holds a Habilitation Doctorate in Molecular Physics, awarded in 1992 by the Higher Attestation Commission of the USSR. He earned his Ph.D. in Theoretical and Mathematical Physics from Byelorussian State University in 1983, under the guidance of Profs. L.A. Rott and E.T. Brook-Levinson. His doctoral research laid the foundation for his future contributions to molecular and mathematical physics. He completed his Master’s degree in Mathematical Physics at Leningrad State University in 1974 after studying there from 1969 to 1974. His strong mathematical background provided him with a rigorous framework to explore fluid dynamics, liquid crystal physics, and tribology. Throughout his academic career, he has integrated theoretical models with experimental data, shaping the development of nanophysics and lubrication science. His education has played a crucial role in his contributions to physics, particularly in hydrodynamics, photonics, and computational modeling.

🏢Work Experience:

Dr. Zakharov has over four decades of experience in molecular physics and hydrodynamics. Since 2009, he has served as Head of the Hydrodynamics of Liquid Crystals Laboratory at the St. Petersburg Institute for Machine Sciences, Russian Academy of Sciences. Before this, he was a Leading Researcher (1995-2009) and Senior Researcher (1986-1995) in the Microwear and Lubrication Laboratory at the same institute. His career also includes roles as a Senior Researcher at the Medical Institute in Minsk (1985-1986) and a Junior Researcher at the Heat and Mass Transfer Institute of the BSSR Academy of Sciences (1974-1984). He has also held numerous international visiting professorships in Japan, Canada, Italy, Turkey, and Sweden. His global experience has significantly contributed to advancements in lubrication science, tribology, and liquid crystal hydrodynamics, reinforcing his position as a leading figure in theoretical and applied physics.

🏅Awards: 

Dr. Zakharov has received numerous accolades for his contributions to physics. He was awarded multiple research grants by the Japan Society for the Promotion of Science (JSPS) and the COE “Photonics Nanodevice Integration Engineering” for his collaborative work at Tokyo Institute of Technology. The Cariplo Foundation and NATO grants supported his research at the University of Pavia, Italy. He also held a Senior Research Fellowship at KU Leuven, Belgium (2002-2004) and a two-year Visiting Professorship at Brandon University, Canada. His pioneering work on liquid crystal hydrodynamics, lubrication science, and photonics has earned him recognition in the global scientific community. His involvement in international collaborations has strengthened research ties across continents, making significant contributions to computational physics, tribology, and nanoscale engineering. These honors underscore his impact on advancing molecular physics and interdisciplinary research in fluid dynamics and materials science.

🔬Research Focus:

Dr. Zakharov’s research spans multiple interdisciplinary domains, including hydrodynamics of liquid crystals, tribology, nanodevice engineering, and mathematical physics. His work in molecular physics and lubrication science has advanced the understanding of fluid dynamics at the nanoscale. He specializes in microwear phenomena, studying the effects of lubrication and friction at microscopic levels to improve mechanical efficiency. His expertise in photonics and nanodevice integration contributes to the development of next-generation materials and optical devices. He has also conducted groundbreaking research in viscoelastic properties of complex fluids, providing theoretical and computational models for practical applications in material science. His mathematical modeling has been instrumental in describing nonlinear effects in liquid crystals, bridging theoretical predictions with experimental findings. His research continues to influence nanotechnology, physics, and mechanical engineering, driving innovations in computational simulations, material properties, and tribological applications.

Publication Top Notes:

Laser-driven nematic flow in microfluidic devices

Authors: Izabela Śliwa, Pavel V. Maslennikov, Dmitrii P. Shcherbinin, and Alex V. Zakharov

Journal: Physical Review E

Publication Date: December 24, 2024

DOI: 10.1103/PhysRevE.110.064702

Citations: As of now, there are no citations listed for this publication.

Anchoring transitions in thin liquid crystal films as seen from a mean-force potentials approach

Authors: Not specified in the available sources.

Journal: Physical Review E

Publication Date: December 17, 2024

DOI: 10.1103/PhysRevE.110.064701

Citations: As of now, there are no citations listed for this publication.

Paired correlations of dipolar liquid crystals: A mean-force-potentials approach

Authors: Not specified in the available sources.

Journal: Physical Review E

Publication Date: November 7, 2024

DOI: 10.1103/PhysRevE.110.054702

Citations: As of now, there are no citations listed for this publication.

MD simulations of diffusion of cyanobiphenyl molecules adsorbed on the graphene surface coated with alkane and alcohol molecules

Authors: Not specified in the available sources.

Journal: Journal of Physical Organic Chemistry

Publication Date: September 2024

DOI: 10.1002/poc.4640

Citations: As of now, there are no citations listed for this publication.

Features of director reorientation in a thin nematic film under the influence of crossed electric and magnetic fields

Authors: Not specified in the available sources.

Journal: Physical Review E

Publication Date: April 26, 2024

DOI: 10.1103/PhysRevE.109.044704

Citations: As of now, there are no citations listed for this publication.

Water/organic liquid interface properties with amine, carboxyl, thiol, and methyl terminal groups as seen from MD simulations

Authors: Not specified in the available sources.

Journal: Journal of Computational Chemistry

Publication Date: December 5, 2023

DOI: 10.1002/jcc.27205

Citations: As of now, there are no citations listed for this publication.

Electrically Driven Kink-Like Distortion Waves in Liquid Crystals

Authors: Not specified in the available sources.

Journal: Liquid Crystals and their Application

Publication Date: September 29, 2023

DOI: 10.18083/LCAppl.2023.3.46

Citations: As of now, there are no citations listed for this publication.

Electrically driven kinklike distorting waves in microsized liquid crystals

Authors: Not specified in the available sources.

Journal: Physical Review E

Publication Date: September 27, 2023

DOI: 10.1103/PhysRevE.108.034703

Citations: As of now, there are no citations listed for this publication.

Photo-Induced Relief in Rheology of Liquid Crystals

Authors: Not specified in the available sources.

Journal: Symmetry

Publication Date: March 14, 2023

DOI: 10.3390/sym15030722

Citations: As of now, there are no citations listed for this publication.

Vortex Dynamics in a Hybrid Aligned Nematic Microvolume with an Orientational Defect

Authors: Not specified in the available sources.

Journal: Symmetry

Publication Date: January 23, 2023

DOI: 10.3390/sym15020324

Citations: As of now, there are no citations listed for this publication.

 

Dr. Samira Abozeid | Inorganic Chemistry Award | Women Researcher Award

Dr. Samira Abozeid | Inorganic Chemistry Award | Women Researcher Award

Dr. Samira Abozeid , Mansoura University , Egypt

Dr. Samira Mohammed Ali Mohammed Abozeid is a Lecturer/Assistant Professor in the Department of Chemistry at Mansoura University and New Mansoura University in Egypt. With expertise in synthesizing metal complexes for advanced applications in MRI contrast agents and nanoparticle-based drug delivery systems, Dr. Abozeid has emerged as a dedicated researcher in the fields of nanomedicine and medical imaging. She holds a Ph.D. in Chemistry from the State University of New York at Buffalo, where she was recognized for her academic excellence and awarded several prestigious fellowships. Dr. Abozeid’s work has led to significant publications in high-impact journals, including two articles in Angewandte Chemie. She is also actively engaged in international collaborations and is currently preparing for a postdoctoral position at the Massachusetts Institute of Technology (MIT). Her research contributions are shaping advancements in chemistry and nanotechnology, underscoring her commitment to impactful scientific exploration.

Professional Profile:

Google Scholar

Scopus

Orcid

Summary of Suitability for Award:

Dr. Samira Mohammed Ali Mohammed Abozeid is an exemplary candidate for the Women Researcher Award due to her impactful contributions to the field of chemistry, particularly in nanotechnology and biomedical applications. Her research focuses on synthesizing metal complexes as MRI contrast agents and developing nanoparticle-based drug delivery systems, aiming to advance diagnostic imaging and targeted therapy. With a Ph.D. in Chemistry from the State University of New York at Buffalo, she has published 18 articles, including in prestigious journals like Angewandte Chemie, which reflects her commitment to high-quality research and innovation. Dr. Abozeid’s academic achievements are complemented by prestigious awards, such as the James T. Grey Fellowship and the Egyptian Government Scholarship, and her appointment as an ACS-certified reviewer. Her international collaborations and upcoming postdoctoral role at MIT further underscore her dedication to scientific advancement and cross-disciplinary research.

🎓Education:

Dr. Abozeid completed her Bachelor’s and Master’s degrees in Chemistry from Mansoura University, Egypt, where she demonstrated strong academic potential and research aptitude. Her pursuit of further specialization led her to the State University of New York at Buffalo, where she earned her Ph.D. in Chemistry. During her doctoral studies, she focused on synthesizing novel metal complexes for biomedical applications, which enhanced her knowledge in chemical synthesis, nanotechnology, and medical imaging. Supported by the Egyptian Government Scholarship, she excelled academically, receiving accolades such as the James T. Grey Fellowship, Mattern-Tyler Teaching Award, and Speyer Fellowship. Her educational journey has been defined by rigorous research and academic excellence, laying a solid foundation for her innovative work in chemistry. Dr. Abozeid’s interdisciplinary education reflects her dedication to advancing research with practical applications in healthcare and diagnostics.

🏢Work Experience:

Dr. Abozeid has been an influential member of the Chemistry Department at Mansoura University, Egypt, where she has contributed to both research and education. She holds dual appointments at Mansoura University and New Mansoura University, collaborating with various research groups on energy applications of metal complexes and drug delivery systems. Her experience includes developing metal complexes and nanoparticles as contrast agents for MRI imaging and as vehicles for targeted drug delivery. She has also undertaken consultancy projects, linking scientific research with industry to address practical needs in Egypt. Her global research engagements include collaborations with international teams, resulting in impactful advancements in nanotechnology. As an ACS-certified reviewer and member of professional societies, she continuously supports scientific rigor in published research. Her upcoming postdoctoral position at MIT further emphasizes her dedication to expanding her research horizon and establishing herself as a leader in chemistry.

🏅Awards:

Dr. Abozeid’s academic and research excellence has been widely recognized. She received the prestigious Egyptian Government Scholarship (2016–2018) to pursue her Ph.D. at the State University of New York at Buffalo, where her accomplishments earned her the James T. Grey Fellowship in 2020. She was also awarded the Mattern-Tyler Teaching Award and the Speyer Fellowship, both reflecting her dedication to academic rigor and mentorship. In 2023, Dr. Abozeid secured competitive funding for a research project at Mansoura University, underscoring her significant contributions to science. Additionally, she was awarded “Best Specialized Lecture” at several scientific conferences, which highlights her ability to effectively communicate complex scientific ideas. Her awards and honors signify her sustained commitment to high-impact research and academic achievement, marking her as a rising expert in the field of chemistry and biomedical applications.

🔬Research Focus:

Dr. Abozeid’s research centers on the design and synthesis of metal complexes and nanoparticles for advanced biomedical applications. Her work aims to develop efficient MRI contrast agents and nanoparticle-based drug delivery systems that enhance diagnostic imaging and targeted therapy. By creating novel transition metal complexes, she contributes valuable insights into the field of medical imaging, particularly in developing MRI probes that improve image contrast and diagnostic accuracy. Additionally, Dr. Abozeid’s research explores liposome-based drug delivery mechanisms for anticancer therapies, focusing on the efficacy and specificity of these treatments. Her interdisciplinary approach integrates chemistry, nanotechnology, and medicine, fostering collaborations that expand the applications of metal complexes in healthcare. Through this research, Dr. Abozeid addresses critical challenges in non-invasive diagnostics and targeted treatment, advancing both fundamental science and its practical applications in nanomedicine.

Publication Top Notes:

  • “Two new inner-sphere Pt (II) thiosemicarbazone Schiff base complexes immobilized into magnetic Nanoparticles: Synthesis, Characterization, and biological investigations”
  • “A novel fluorescent probe based imprinted polymer-coated magnetite for the detection of imatinib leukemia anti-cancer drug traces in human plasma samples”
  • “Fe(III) T1 MRI Probes Containing Phenolate or Hydroxypyridine-Appended Triamine Chelates and a Coordination Site for Bound Water”
    • Citations: 5
  • “Co (ii) complexes of tetraazamacrocycles appended with amide or hydroxypropyl groups as paraCEST agents”
    • Citations: 3
  • “Comparison of phosphonate, hydroxypropyl and carboxylate pendants in Fe (III) macrocyclic complexes as MRI contrast agents”
    • Citations: 18