Assist. Prof. Dr. Emilia Paone | Industrial Chemistry | Young Scientist Award

Assist. Prof. Dr. Emilia Paone | Industrial Chemistry | Young Scientist Award

Assist. Prof. Dr. Emilia Paone , Industrial Chemistry , Assistant Professor at Università degli Studi Mediterranea di Reggio Calabria, Italy

Dr. Emilia Paone is a dynamic and forward-thinking Fixed-Term Researcher (RTD-B) at the Università degli Studi Mediterranea di Reggio Calabria, specializing in Industrial Chemistry (SSD: CHIM/07). Born on September 14, 1990, in Reggio Calabria, Italy, she has emerged as a leading young scientist in the field of heterogeneous catalysis for sustainable chemical transformations. Her research pivots on the valorization of waste biomass and plastic residues into high-value chemicals and fuels. With over 41 peer-reviewed international publications, an h-index of 21, and significant international collaborations, Dr. Paone has built a formidable academic presence. She has held multiple national scientific qualifications for associate professorship in both CHIM/04 and CHIM/07. Her global perspective is enriched by research periods in Spain and collaboration with industrial partners. An active voice in green chemistry and environmental sustainability, she is a rising star driving innovation in catalytic materials and waste valorization technologies.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Emilia Paone exemplifies the core qualities sought in a “Young Scientist Award” recipient. With a Ph.D. in Civil, Environmental, and Safety Engineering, she has consistently demonstrated scientific maturity, innovation, and dedication in the realm of green and sustainable chemistry. Her postdoctoral and fixed-term research roles, particularly under national initiatives such as DM 1062/2021 in thematic GREEN areas, highlight her alignment with sustainability and circular economy goals. She has published 41 peer-reviewed papers, authored 2 book chapters, and amassed over 2,000 citations with an h-index of 21, which is remarkable for a young researcher. Her work on heterogeneous catalysis, biomass valorization, and e-waste upcycling contributes meaningfully to global sustainability challenges. She has held international research roles, including ERASMUS+ staff mobility in Spain, showing global engagement and collaborative spirit. Moreover, she has achieved dual National Scientific Qualifications for Associate Professor roles, underscoring her excellence and leadership potential.Dr. Emilia Paone’s proven research excellence, international collaborations, impactful publications, and clear contribution to sustainable technologies make her a strong, deserving, and outstanding candidate for the “Young Scientist Award’. Her work not only meets but exceeds the typical expectations for this recognition, and she stands as a role model for early-career researchers in green and industrial chemistry.

🎓Education:

Dr. Paone earned her Bachelor’s (2009–2013) and Master’s Degrees (2013–2015) in Chemistry from the Università degli Studi di Messina. She then completed her Ph.D. in Civil, Environmental, and Safety Engineering (2015–2018) at the Università degli Studi Mediterranea di Reggio Calabria, specializing in Science and Technology, Materials, and Energy. Her doctoral thesis was titled “Transfer Hydrogenolysis of Lignin and its Derived Aromatic Ethers Promoted by Heterogeneous Bimetallic Pd-Based Catalysts.” She has also completed a qualification exam in chemistry exercise in 2015. Emilia further enhanced her academic training with research internships in both Italy and Spain, including studies on chemical equilibria and potable water analysis. Notably, she has enriched her learning with international research mobility under Erasmus+, and visiting positions in Spain, gaining practical expertise in nanostructured materials, catalysis, and green technologies.

🏢Work Experience:

Dr. Paone currently serves as a Fixed-Term Researcher (RTD-B) at Università degli Studi Mediterranea di Reggio Calabria (since March 2024), focusing on Industrial Chemistry. Previously, she held an RTD-A position (2022–2024) under Italy’s GREEN program (Action IV.6), collaborating with Capua 1880 s.r.l. on sustainable technologies. Earlier, as a postdoctoral researcher (2021), she worked on the environmental sustainability of materials recovered from lithium battery waste. From 2019 to 2021, she worked with the University of Florence and Reggio Calabria on nanostructured materials for detecting metal ions in solutions. During her Ph.D. and internships, she explored lignin valorization and heterogeneous catalysis. Internationally, she served as a Visiting Researcher and Professor at the University of Córdoba, Spain, and as a Ph.D. student researcher in the same institution. Her experience spans academia, industrial collaboration, and international teaching and research exchanges—showcasing both scientific excellence and applied innovation.

🏅Awards: 

Dr. Emilia Paone has achieved significant recognition in the field of sustainable chemistry and heterogeneous catalysis through her impactful research and academic contributions. She holds two prestigious National Scientific Qualifications (Abilitazione Scientifica Nazionale) for the role of Associate Professor—one in Industrial Chemistry (CHIM/04 – 03/C2) awarded in 2023, and another in Principles of Chemistry for Applied Technologies (CHIM/07 – 03/B2) awarded in 2022. These qualifications are a testament to her high scientific standards and professional competence, as evaluated by national committees in Italy. Furthermore, her international engagement and excellence were highlighted when she was selected as a Visiting Researcher and Professor under the ERASMUS+ Staff Mobility program in 2023 at the Universidad de Córdoba, Spain. Her academic visibility is reinforced by her impressive bibliometric indicators, with over 2,000 citations and an h-index of 21, showcasing her growing influence in catalysis, green chemistry, and the valorization of waste to high-value products.

🔬Research Focus:

Dr. Paone’s research is at the cutting edge of green chemistry 🌱, with a core focus on heterogeneous catalysis for the valorization of waste and biomass into value-added products such as bioplastics, biofuels, and fine chemicals. Her work spans the transfer hydrogenolysis of lignin, reductive catalytic upgrading of plastic waste, and photocatalytic degradation of pollutants, contributing to sustainable circular economy models. She has developed MOF-derived, single-atom, and bimetallic Pd-based catalysts that efficiently convert industrial and e-waste streams. She actively collaborates on projects transforming orange peels, PET, polyolefins, and lithium battery residues into useful chemicals via eco-friendly methods. Her interdisciplinary approach combines catalyst design, nanomaterials, environmental remediation, and flow chemistry, with a strong emphasis on industrial scalability and green metrics. Dr. Paone’s research consistently addresses pressing climate and sustainability goals, establishing her as a key player in Europe’s scientific green transition.

Publication Top Notes:

Continuous flow production of γ-valerolactone from methyl-levulinate promoted by MOF-derived Al₂O₃–ZrO₂/C catalysts

Waste-minimized access to diarylamines and triarylamines via Csp²–N coupling under batch and flow conditions

E-Waste Wars: The Catalyst Awakens

Long-Term Preservation of Orange Peel Waste for the Production of Acids and Biogas

Direct Reuse of Spent Lithium-Ion Batteries as an Efficient Heterogeneous Catalyst for the Reductive Upgrading of Biomass-Derived Furfural

The reductive catalytic upcycling of polyolefin plastic waste

Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials

A New Biorefinery Approach for the Full Valorisation of Anchovy Residues: Use of the Sludge Generated during the Extraction of Fish Oil as a Nitrogen Supplement in Anaerobic Digestion

Electrospun Nanofibers and Electrochemical Techniques for the Detection of Heavy Metal Ions.

Self Standing Mats of Blended Polyaniline Produced by Electrospinning

Integral valorization of orange peel waste through optimized ensiling: Lactic acid and bioethanol production

Sustainably Sourced Olive Polyphenols and Omega-3 Marine Lipids: A Synergy Fostering Public Health

 

Prof. Dr. Helin Niu | Inorganic Chemistry | Best Researcher Award

Prof. Dr. Helin Niu | Inorganic Chemistry | Best Researcher Award

Prof. Dr. Helin Niu , Anhui University , China

Prof. Dr. Helin Niu (牛和林) is a distinguished Professor and Head of the Chemistry Department at Anhui University, China. With a Ph.D. from the University of Science and Technology of China, his expertise lies in the synthesis and application of novel photoelectric functional materials. His research spans energy science, food science, and life science, focusing on developing advanced materials for environmental and technological applications. Prof. Helin Niu has secured multiple prestigious research grants, including funding from the National Natural Science Foundation of China. He has held academic positions at Korea University and conducted postdoctoral research at Hefei National Laboratory for Physical Sciences. His contributions to material chemistry have led to innovative advancements in flexible electronic devices, supercapacitors, and metal-organic frameworks. With numerous high-impact publications, he is a leader in inorganic chemistry and materials chemistry, actively mentoring Ph.D. students and advancing the field through interdisciplinary research.

Professional Profile:

Scopus

Summary of Suitability for Award:

Prof. Helin Niu is a highly accomplished researcher in the field of inorganic and materials chemistry, making him a strong candidate for the Best Researcher Award. As a Professor, Ph.D. Supervisor, and Head of the Chemistry Department at Anhui University, his contributions extend beyond research, impacting education and scientific leadership. His work on photoelectric functional materials, energy storage systems, and metal-organic frameworks has led to groundbreaking innovations in material science. Prof. Helin Niu’s exceptional research output, leadership in academia, and contributions to material chemistry innovations make him highly deserving of the Best Researcher Award. His commitment to advancing scientific knowledge, mentoring young researchers, and securing competitive funding positions him as a leader in modern chemistry. Recognizing him with this award would acknowledge not only his research excellence but also his significant impact on scientific progress and innovation.

🎓Education:

Prof. Helin Niu obtained his Ph.D. in Chemistry from the University of Science and Technology of China. His doctoral research, under the supervision of Professor Qian-Wang Chen, focused on the synthesis and mechanism studies of functional materials. His academic journey laid a strong foundation for his expertise in inorganic chemistry and materials chemistry. Throughout his studies, he developed a deep understanding of chemical preparation, performance evaluation, and the applications of novel materials. His research training at one of China’s top institutions provided him with extensive experience in advanced analytical techniques, computational modeling, and nanomaterial synthesis. His passion for chemistry led him to explore the intersections of photoelectric materials, energy storage, and environmental applications. His education equipped him with the skills to conduct cutting-edge research and develop innovative solutions for next-generation functional materials, establishing him as a leading scientist in his field.

🏢Work Experience:

Prof. Helin Niu has held multiple prestigious academic and research positions. Currently, he serves as a Professor and Ph.D. Supervisor at the School of Chemistry and Chemical Engineering, Anhui University, where he also leads the Chemistry Department. He has been instrumental in shaping the university’s research direction in advanced material science. His international experience includes serving as a Research Lecturer at Korea University’s Center for Advanced Device Materials, where he contributed to material innovation. Additionally, he completed a postdoctoral research fellowship at the Hefei National Laboratory for Physical Sciences, further deepening his expertise in nanoscale material synthesis and characterization. Over the years, he has led numerous funded projects, collaborated with industrial partners, and guided students in pioneering research. His commitment to scientific advancement and mentorship has made him a key figure in China’s inorganic chemistry and materials science community.

🏅Awards: 

Prof. Helin Niu has received numerous accolades for his groundbreaking research in chemistry. His work has been recognized with prestigious grants from the National Natural Science Foundation of China, Postdoctoral Science Foundation of China, and the Ministry of Education’s Research Start-up Fund for Returned Scholars. He has also secured funding from industry leaders, including Shanghai Tobacco Group Corporation and Shanghai Haowei Chemical Co., Ltd. His scientific excellence has been acknowledged through competitive provincial awards, including support from the Anhui Provincial Department of Education and the Natural Science Foundation of Anhui Province. In recognition of his innovative contributions, he has been invited as a keynote speaker at major scientific conferences and serves as a reviewer for high-impact journals. His dedication to advancing material chemistry and his influence in academia make him a well-respected leader in his field.

🔬Research Focus:

Prof. Helin Niu specializes in the chemical preparation, performance evaluation, and application of novel photoelectric functional materials. His research is centered on developing high-performance composite devices for energy storage, flexible electronics, and environmental applications. A significant portion of his work involves the synthesis of metal-organic frameworks, supercapacitor electrode materials, and near-infrared-responsive nanocomposites. His contributions to food science include the detection of harmful pollutants using advanced materials. He also explores energy-efficient devices, such as carbon membrane-based sensors and flexible capacitors. His interdisciplinary approach combines fundamental chemistry with applied research, pushing the boundaries of material science. Through his funded projects, he has made significant advancements in metal-induced self-assembly techniques, electrochemical energy storage, and photonic materials, solidifying his reputation as a leader in inorganic chemistry and materials chemistry.

Publication Top Notes:

Fine-tuning the molecular conformation and packing structures of coumarin-based luminogens to achieve distinct piezochromic properties upon mechanical grinding and under hydrostatic pressures

Authors: S. Fu, H. Jia, X. Meng, J. Yang, H. Niu

Journal: Materials Horizons

Year: 2024

Citations: 1

A general metal acetate-assisted alcohol thermal strategy to fabricate flexible carbon nanofiber films for supercapacitors

Authors: W. Song, K. Wang, X. Lian, C. Xu, H. Niu

Journal: Inorganic Chemistry Frontiers

Year: 2024

Rational design of MXene/MWCNT/TOCNF film for flexible supercapacitor

Authors: J. Chen, M. Feng, X. Lian, K. Wang, H. Niu

Journal: Ceramics International

Year: 2024

Citations: 3

Controlling the Degree of Interpenetration in Chiral Three-Dimensional Covalent Organic Frameworks via Steric Tuning

Authors: K. Wang, B. Hou, J. Dong, Y. Liu, Y. Cui

Journal: Journal of the American Chemical Society

Year: 2024

Citations: 5

Non-preoxidation synthesis of MXene integrated flexible carbon film for supercapacitors

Authors: W. Song, K. Wang, X. Lian, F. Zheng, H. Niu

Journal: Chemical Engineering Journal

Year: 2024

Citations: 4

Sulfur-Doped CoNi Layered Double Hydroxide/Carbon Nanofiber Composite Films for Flexible Supercapacitors

Authors: W. Song, K. Wang, X. Lian, H. Niu

Journal: ACS Applied Nano Materials

Year: 2024

Citations: 3

Multicolor Fluorescent Inks Based on Lanthanide Hybrid Organogels for Anticounterfeiting and Logic Circuit Design

Authors: X. Lian, R. Chang, G. Huang, B. Yao, H. Niu

Journal: ACS Applied Materials and Interfaces

Year: 2024

Citations: 2

Highly Flexible Carbon Film Implanted with Single-Atomic Zn−N2_2 Moiety for Long-Life Sodium-Sulfur Batteries

Authors: G. Yao, Z. Li, Y. Zhang, Y. Yang, F. Zheng

Journal: Advanced Functional Materials

Year: 2024

Citations: 28

Ni3_3S4_4 combined hydrophilic hydroxylated MWCNTs for high-performance asymmetric supercapacitors

Authors: J. Zheng, H. Niu, J. Zhao, Z. Zhao, G. Li

Journal: Diamond and Related Materials

Year: 2023

Citations: 1

Highly Flexible K-Intercalated MnO2_2/Carbon Membrane for High-Performance Aqueous Zinc-Ion Battery Cathode

Authors: J. Yang, G. Yao, Z. Li, Q. Chen, F. Zheng

Journal: Small

Year: 2023

Citations: 60