Assist. Prof. Dr. TESFAYE HAILE HABTEMARIAM | Green Chemistry | Best Researcher Award

Assist. Prof. Dr. TESFAYE HAILE HABTEMARIAM | Green Chemistry | Best Researcher Award

Assist. Prof. Dr. TESFAYE HAILE HABTEMARIAM , Green Chemistry , Inorganic Chemist at Wolaita Sodo University, Ethiopia

Dr. Tesfaye Haile Habtemariam, is an Ethiopian inorganic chemist and Assistant Professor at Wolaita Sodo University. With over a decade of academic and research experience, he specializes in inorganic materials, nanotechnology, and environmental chemistry. He earned both his M.Sc. and Ph.D. in Chemistry from Addis Ababa University and undertook a research visit at the University of Nottingham, UK. Dr. Tesfaye has held leadership roles, including Head of the Chemistry Department at Wolaita Sodo University. An active member of prestigious chemical societies like the American Chemical Society and Royal Society of Chemistry, he contributes significantly to research in MOFs, photocatalysis, and nanomaterials. Dr. Tesfaye is well-regarded for his community-oriented research, particularly in water treatment and environmental remediation, and has authored multiple peer-reviewed publications. His commitment to scientific innovation and education makes him a valuable contributor to both national and international scientific communities.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Tesfaye Haile Habtemariam is highly suitable for the “Best Researcher Award”. His consistent research output, international exposure, impactful studies in environmental and materials chemistry, and leadership roles reflect a well-rounded academic profile. His work in nanotechnology and MOFs addresses pressing global issues, reinforcing his candidacy for this prestigious recognition. He is an exemplary researcher contributing meaningfully to science, innovation, and academic mentorship, making him a strong nominee for the “Best Researcher Award”.His impactful research on environmentally focused nanomaterials, global academic recognition, consistent publication record, and leadership in Ethiopian higher education underscore his contributions to science, innovation, and sustainable development.He exemplifies the qualities of a top-tier researcher with international collaborations, practical solutions, and dedication to academic excellence, making him an outstanding nominee for this honor.

🎓Education:

Dr. Tesfaye received both his advanced degrees in Inorganic Chemistry from Addis Ababa University. He completed his M.Sc. (2008–2010) with research focused on inorganic synthesis, followed by a Ph.D. (2014–2019), where he explored novel metal-organic frameworks and porous materials for environmental applications. During his Ph.D., he was awarded an opportunity to conduct part of his research at the University of Nottingham, UK, under the supervision of Prof. Neil R. Champness, gaining international exposure and experience in cutting-edge material science. This academic journey laid the foundation for his career in materials chemistry, environmental catalysis, and nanotechnology. His educational path reflects strong theoretical and applied understanding in inorganic chemistry, further enriched by hands-on laboratory skills and cross-disciplinary collaboration. This robust background enables him to contribute significantly to both teaching and research in the field of chemistry at national and international levels.

🏢Work Experience:

Since October 29, 2010, Dr. Tesfaye Haile Habtemariam has served as an Assistant Professor of Inorganic Chemistry at Wolaita Sodo University, Ethiopia. Over the years, he has been actively involved in teaching undergraduate and postgraduate chemistry courses, mentoring students, and leading numerous research projects. From October 2019 to November 2021, he served as the Head of the Department of Chemistry, where he played a crucial role in strengthening teaching, research, and community engagement activities in line with national education policy. Dr. Tesfaye has established himself as a proactive academician with expertise in nanotechnology, MOFs, and adsorptive materials. His collaborative approach has led to productive research engagements and multiple publications. He also contributed to institutional development and curriculum improvements while promoting sustainable technologies for environmental management. His experience integrates research, administration, and teaching—making him a well-rounded academic leader and contributor to Ethiopia’s scientific development.

🏅Awards: 

Dr. Tesfaye has received several honors recognizing his academic and research contributions. In 2019, he won a year’s subscription to ChemComm awarded at the PACN Congress by the Royal Society of Chemistry (RSC). This reflected his active participation and engagement with international scientific forums. Earlier in 2015, he was awarded a UNESCO-IHE short course scholarship for “Nanotechnology for Water and Wastewater Treatment” held in Delft, The Netherlands, which enhanced his expertise in water purification technologies using nanomaterials. These awards not only highlight his scientific curiosity but also his commitment to global knowledge exchange and interdisciplinary collaboration. Dr. Tesfaye is a Member of the Royal Society of Chemistry (MRSC), the American Chemical Society (ACS), and the Chemical Society of Ethiopia, affirming his engagement with the global scientific community. These accolades demonstrate both his potential and proven track record in sustainable science and innovation.

🔬Research Focus:

Dr. Tesfaye’s research focuses on the synthesis and application of inorganic and nanostructured materials for environmental and energy-related challenges. His core interests include the design and spectroscopic study of Metal-Organic Frameworks (MOFs) for use in photocatalysis, water and wastewater treatment, and removal of toxic contaminants. He also investigates adsorptive materials, exploring their capacity to eliminate pollutants such as heavy metals and dyes from aqueous systems. Additionally, he works on nanotechnology applications for antibacterial activity, leveraging biosynthesized nanoparticles from plant extracts for sustainable health applications. A particular strength of his research lies in green synthesis methods, combining traditional knowledge with modern chemistry to produce eco-friendly materials. His interdisciplinary work links material science, environmental chemistry, and nanotechnology, aiming to develop low-cost, efficient, and scalable solutions for real-world environmental problems in Ethiopia and beyond.

Publication Top Notes:

1. Nutritional and Mineral Composition of Amaranthus caudatus Leaves in Wolaita Zone, Southern Ethiopia

2. Adsorptive Removal of Cr(VI) from Aqueous Solution Using Activated Carbon of Enset Root (Ensete ventricosum)

3. Biological Synthesis of ZnO Nanoparticles Using Fruit Extract of Ruta Chalepensis as Photoelectrode for Dye Sensitized Solar Cell Application

4. Biosynthesis of CuO Nanoparticle Using Leaf Extracts of Ocimum lamiifolium Hochst. ex Benth and Withania somnifera (L) Dunal for Antibacterial Activity

5. Pillared‐Layer Metal‐Organic Frameworks (MOFs) for Photodegradation of Methyl Orange in Wastewater

6. Polyaniline‐ZnO‐NiO Nanocomposite Based Non‐Enzymatic Electrochemical Sensor for Malathion Detection

7. Room Temperature Synthesis of Pillared-Layer Metal–Organic Frameworks (MOFs)

8. The Determination of Caffeine Level of Wolaita Zone, Ethiopia Coffee Using UV-Visible Spectrophotometer

 

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori | Green Extraction Award | Best Researcher Award

Assist. Prof. Dr Maryam Khajenoori , Semnan University , Iran 

Dr. Maryam Khajenoori is an Assistant Professor of Chemical Engineering at Semnan University, Iran. she is a specialist in subcritical water extraction (SWE) and chemical process engineering. Dr. Khajenoori’s academic career centers around sustainable separation processes and nanoparticle synthesis, with extensive research in solubility analysis, green extraction methods, and thermodynamic modeling. She is an accomplished educator, guiding students through advanced engineering mathematics, mass transfer, and environmental biotechnology. A published author in renowned journals, Dr. Khajenoori’s expertise extends to practical applications in chemical engineering and sustainable energy. She is proficient in multiple programming languages and specialized software, utilizing her technical skills to advance both academic research and applied chemical engineering processes.

Professional Profile: 

Google Scholar

Scopus 

Summary of Suitability for Award:

Dr. Maryam Khajenoori’s combination of academic excellence, significant research contributions, and focus on sustainability makes her a strong contender for the “Best Researcher Awards.” Her research on subcritical water extraction and related sustainable chemical processes is not only innovative but also has practical implications for industries like pharmaceuticals, food, and environmental engineering. Given her proven track record of influential publications, successful projects, and teaching roles, she is highly deserving of this recognition. Her work is set to continue making an important impact in both academic and industrial spheres, reaffirming her status as a leading researcher in the field.

🎓Education:

Dr. Khajenoori holds a Ph.D. in Chemical Engineering from Semnan University, specializing in the thermodynamics and kinetics of chemical reactors. She obtained her M.Sc. in Chemical Engineering with a focus on Separation Processes from the same institution , by  following her B.Sc. in Chemical Engineering (Polymer Branch) from Isfahan University of Technology (IUT) . Her foundational education includes a diploma in Mathematics and Physics from Dehkhoda High School in Kashan, Isfahan, Iran. Her academic journey has been marked by a rigorous focus on chemical processes, separation techniques, and sustainable engineering methodologies, paving the way for her research interests in green extraction and solubility of bioactive compounds.

🏢Work Experience:

Dr. Khajenoori has diverse teaching experience at Semnan University, covering subjects such as advanced mass transfer, environmental biotechnology, unit operations, and engineering mathematics. She has also instructed in specialized labs and workshops, including MATLAB, Aspen, and Hysys, to equip students with practical skills. Additionally, her research projects include studies on the thermokinetics of SWE for her Ph.D., superheated water extraction in her M.Sc., and pollutant studies in groundwater from her undergraduate studies. She has also completed numerous projects in CO2 capture, computational fluid dynamics, and molecular dynamics, applying her expertise in both teaching and research for sustainable chemical engineering solutions.

🏅Awards:

Dr. Khajenoori has earned recognition for her research contributions, particularly in the areas of subcritical water extraction and solubility analysis. Her pioneering work on SWE of essential oils has garnered international attention, and she has been invited to present her findings at leading scientific conferences. She has also been recognized within Semnan University for her dedication to both teaching and research, receiving accolades for her contributions to environmental biotechnology and sustainable chemical engineering practices. Additionally, her efforts in green extraction methods have placed her at the forefront of sustainable engineering, further affirming her as a respected figure in the field.

🔬Research Focus:

Dr. Khajenoori’s research primarily explores sustainable and green extraction methods, particularly subcritical water extraction (SWE) for bioactive compounds. Her interests extend to the solubility of valuable compounds like curcumin in SWE conditions, nanoparticle synthesis using environmentally friendly techniques, and pollution treatment processes. She has conducted extensive studies on thermodynamic modeling and the effect of SWE on various essential oils, aiming to optimize extraction efficiency and purity. Through her focus on sustainable practices, Dr. Khajenoori contributes to advancements in eco-friendly chemical engineering and supports the development of alternative extraction techniques to reduce environmental impact.

Publication Top Notes:

  •  Subcritical water extraction
     Citations: 144
  • Proposed models for subcritical water extraction of essential oils
    Citations: 103
  • Mass Transfer: Advances in Sustainable Energy and Environment Oriented Numerical Modeling
    Citations: 71
  •  Subcritical water extraction of essential oils from Zataria multiflora Boiss
    Citations: 63
  • Extraction of Curcumin and Essential Oil from Curcuma longa L. by Subcritical Water via Response Surface Methodology
    Citations: 58