Ms. NTUMBA LOBO | Physical Chemistry | Best Researcher Award

Ms. NTUMBA LOBO | Physical Chemistry | Best Researcher Award

Ms. NTUMBA LOBO | Physical Chemistry | PhD student at NAGOYA INSTITUTE OF TECHNOLOGY, Japan

Ntumba Lobo, a Congolese researcher, is a Ph.D. student and research assistant at Nagoya Institute of Technology, Japan. She specializes in semiconductor materials, focusing on carrier recombination effects in perovskites. She holds a Master’s degree from Shibaura Institute of Technology, Japan, in hydrogen storage materials, and an M.Sc. in Nuclear Physics from Addis Ababa University, Ethiopia. With experience in international collaborations, she was an exchange researcher at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. Ntumba has participated in several scientific conferences and published extensively in high-impact journals. She has also held teaching and research positions, including at the University of Kinshasa and the Centre Régional de Recherche Nucléaire de Kinshasa. Her work contributes significantly to materials science and renewable energy applications.

Professional Profile :         

Google Scholar

Orcid

Scopus  

Summary of Suitability for Award:

Ntumba Lobo is an exceptional researcher with a strong multidisciplinary background in semiconductor materials, energy storage, and nuclear physics. Her Ph.D. research at Nagoya Institute of Technology, Japan, focuses on metal halide perovskites, lithium tantalate, and carrier dynamics, contributing significantly to the development of advanced semiconductor materials. She has demonstrated excellence in research through multiple international collaborations, including an exchange program at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. Her expertise in material characterization techniques such as Time-Resolved Photoluminescence (TRPL), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) has led to high-impact publications and conference presentations. Ntumba Lobo’s extensive research contributions, global collaborations, and expertise in semiconductor and energy materials make her a strong candidate for the “Best Researcher Award.” Her work is not only innovative but also has a significant impact on the future of optoelectronic devices and sustainable energy solutions. Her dedication to scientific excellence, combined with her ability to work across disciplines, positions her as a deserving recipient of this prestigious recognition.

🎓Education:

Ntumba Lobo is currently pursuing a Ph.D. in Science and Engineering at Nagoya Institute of Technology, Japan, specializing in semiconductor materials (expected completion in September 2025). She was an exchange student at i-MEET, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, in 2022, where she worked on single and polycrystal semiconductor materials. She obtained a Master’s degree in Science and Engineering from Shibaura Institute of Technology, Japan (2018-2020), focusing on energy storage materials. Before that, she completed an M.Sc. in Nuclear Physics from Addis Ababa University, Ethiopia (2014-2016), with a dissertation on nuclear fusion reactions. Her academic journey began with a B.Sc. (Honors) in Physics from the University of Kinshasa, Democratic Republic of the Congo (2012), where she contributed to non-destructive characterization of reinforced concrete using ultrasound methods. Her diverse educational background in physics, material science, and engineering has equipped her with expertise in semiconductor research and energy materials.

🏢Work Experience:

Ntumba Lobo has extensive experience in research and teaching. Since 2020, she has been a Research Assistant at Nagoya Institute of Technology, working on semiconductor materials and device characterization. She has completed multiple internships, including at OSM Group Co., Ltd. (Japan, 2019) and For Delight Co. Ltd. (Japan, 2018), where she gained industry exposure. Her research career started with an internship at the Centre Régional de Recherche Nucléaire de Kinshasa (2016-2017) in nuclear physics. She also worked as a Teaching Assistant at the University of Kinshasa (2013-2014) and taught physics, scientific drawing, and technology at Liziba High School (2012-2013). Her hands-on expertise in material characterization techniques, including Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and photoconductivity measurements, has contributed to multiple high-impact publications. Her professional experience spans academic, industrial, and research institutions, making her a well-rounded scientist in semiconductor and energy materials.

🏅Awards: 

Ntumba Lobo has been recognized for her contributions to material science and semiconductor research. She received funding for an exchange research program at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany (2022), where she worked on advanced semiconductor materials. Her research on energy storage materials during her Master’s at Shibaura Institute of Technology was highly appreciated. She has presented her work at prestigious conferences, including the 16th International Symposium on Metal-Hydrogen Systems (China, 2018) and the Solid-State Devices and Materials Conference (Japan, 2023). She also participated in specialized training programs such as the Summer School on Space Weather in Kinshasa (2011) and Advanced Python Programming and Geographic Information Systems training in Addis Ababa (2016). Her continuous engagement in international research collaborations and conferences showcases her commitment to scientific advancement.

🔬Research Focus:

Ntumba Lobo’s research focuses on semiconductor materials, particularly metal halide perovskites and their carrier dynamics. She investigates surface recombination, carrier lifetime, and trapping effects in single and polycrystalline materials using techniques like Microwave Photoconductivity Decay (µPCD) and Time-Resolved Photoluminescence (TRPL). Her work extends to lithium tantalate and its photoconductance properties. She has also contributed to the field of hydrogen storage materials, analyzing the effects of TiO₂, Nb₂O₅, and TiH₂ catalysts on magnesium hydride. Additionally, her expertise in nuclear physics has allowed her to explore neutron-induced reactions and fusion mechanisms. By integrating her knowledge in physics, materials science, and engineering, she aims to develop efficient, stable, and high-performance materials for energy storage and semiconductor applications. Her research is pivotal in advancing next-generation optoelectronic devices and sustainable energy solutions.

Publication Top Notes:

Stability investigation of the γ-MgH₂ phase synthesized by high-energy ball milling

Citations: 27

Stable quasi-solid-state zinc-ion battery based on the hydrated vanadium oxide cathode and polyacrylamide-organohydrogel electrolyte

Citations: 13

Trapping effects and surface/interface recombination of carrier recombination in single- or poly-crystalline metal halide perovskites

Citations: 9

Study of ²⁰Ne Induced Reaction in ⁵⁹Co: Incomplete and Complete Fusion

Citations: 3

Effect of TiO₂ + Nb₂O₅ + TiH₂ Catalysts on Hydrogen Storage Properties of Magnesium Hydride

Citations: 2

La Super Symétrie en Physique Quantique

Citations: 1

Mitigation of carrier trapping effects on carrier lifetime measurements with continuous-wave laser illumination for Pb-based metal halide perovskite materials

Transport and business improvement in the province of South-Ubangi (Democratic Republic of the Congo)

 

Mrs. Ralitsa Uzunova | Physical Chemistry | Best Researcher Award

Mrs. Ralitsa Uzunova | Physical Chemistry | Best Researcher Award

Mrs. Ralitsa Uzunova | Physical Chemistry | PhD student/ Researcher at Department of Chemical and Pharmaceutical Engineering, sofia university, Bulgaria

Ralitsa Ivanova Uzunova is a dedicated Ph.D. student and researcher in the Department of Chemical and Pharmaceutical Engineering at Sofia University “St. Kliment Ohridski.” With a strong background in chemistry, she holds a Bachelor’s degree in “Chemistry” and a Master’s in “Medicinal Chemistry.” Over the past seven years, she has actively contributed to various research projects, particularly in surfactant solutions, interfacial tension, and adsorption studies. She has participated in 13 national and international conferences, delivering nine oral presentations, including at the prestigious 37th European Colloid and Interface Society Conference and the 19th European Student Colloid Conference. Her collaborations extend to industry giants like Unilever and S.C. Johnson, as well as the National Science Fund of Bulgaria. Ralitsa’s work focuses on understanding volatile molecules’ adsorption-desorption mechanisms, which are crucial in cosmetics, household products, and pharmaceuticals. Her dedication to research has led to two indexed journal publications, benefiting the broader scientific community.

Professional Profile :         

Orcid

Scopus  

Summary of Suitability for Award:

Ralitsa Ivanova Uzunova is an emerging researcher in the field of Chemical and Pharmaceutical Engineering, specializing in surface chemistry, interfacial tension, and adsorption phenomena. With a strong academic background (Bachelor’s in Chemistry and Master’s in Medicinal Chemistry), she has gained seven years of research experience at Sofia University “St. Kliment Ohridski.” Her participation in eight research projects, two indexed journal publications, and four industry collaborations with Unilever, S. C. Johnson, and others demonstrate her contribution to applied research. Additionally, her active engagement in national and international conferences (including the 37th European Colloid and Interface Society Conference) highlights her role in scientific dissemination. Her work on volatile molecules used in cosmetics and household formulations has both theoretical significance and industrial application, aligning well with the criteria for excellence in research. Ralitsa Ivanova Uzunova is a deserving candidate for the “Best Researcher Award”, given her multifaceted contributions to chemical engineering research, industrial collaborations, and scientific impact. Her interdisciplinary expertise in cosmetics, pharmaceuticals, and surface chemistry showcases her ability to bridge academia and industry, making her an ideal contender for this prestigious recognition.

🎓Education:

Ralitsa Ivanova Uzunova pursued her higher education in chemistry with a keen interest in interdisciplinary applications. She obtained her Bachelor’s degree in Chemistry from Sofia University “St. Kliment Ohridski,” where she built a strong foundation in chemical principles and analytical techniques. Following her undergraduate studies, she completed a Master’s degree in Medicinal Chemistry, focusing on bioactive compounds and their applications in pharmaceuticals and healthcare. Currently, she is pursuing a Ph.D. in Chemical and Pharmaceutical Engineering, specializing in surfactant solutions, interfacial tension, and adsorption phenomena. Throughout her academic journey, she has been actively engaged in research and has collaborated with industrial partners on multiple projects. Her educational background has equipped her with expertise in static and dynamic interfacial tension, cleaning mechanisms, and volatile molecule adsorption-desorption processes. Ralitsa continues to expand her knowledge through research collaborations, conference presentations, and scientific publications.

🏢Work Experience:

Ralitsa Ivanova Uzunova has amassed seven years of experience in research and academia while working in the Department of Chemical and Pharmaceutical Engineering at Sofia University. Her expertise spans static and dynamic interfacial tension, surfactant solutions, and oil drop attachment/detachment studies. She has contributed to eight research projects, collaborating with industry leaders such as Unilever, S. C. Johnson, and the National Science Fund of Bulgaria. Additionally, she has been involved in four consultancy/industry projects, applying her knowledge to real-world challenges in cosmetics and household chemistry. Ralitsa has actively participated in 13 national and international conferences, delivering nine oral presentations, including at prestigious European colloid conferences. Her research has resulted in two indexed journal publications, contributing valuable insights into volatile molecule interactions. Her work is instrumental in developing formulations for personal care and industrial applications, bridging the gap between scientific research and industrial needs.

🏅Awards: 

Ralitsa Ivanova Uzunova has been recognized for her exceptional contributions to the field of chemical and pharmaceutical engineering. She has received multiple accolades for her oral presentations at international conferences, particularly at the 37th European Colloid and Interface Society Conference and the 19th European Student Colloid Conference, where her work on interfacial tension and surfactant solutions was highly appreciated. As a member of the Bulgarian Association of Cosmetologists, she has contributed significantly to research in cosmetics and household chemistry. Her research collaborations with Unilever and S. C. Johnson have also been acknowledged for their impact on industrial formulations. Additionally, her involvement in National Science Fund of Bulgaria projects has played a crucial role in advancing knowledge in volatile molecule adsorption-desorption mechanisms. Ralitsa is currently nominated for the Best Researcher Award, recognizing her dedication to scientific excellence and innovation in colloid and interface science.

🔬Research Focus:

Ralitsa Ivanova Uzunova’s research focuses on static and dynamic interfacial tension, surfactant solutions, and volatile molecule interactions. Her work explores the bulk properties and adsorption behaviors of surfactants, which are crucial in cleaning, cosmetics, and pharmaceutical applications. She investigates the attachment/detachment of oil drops, enhancing formulations for detergents, skincare, and industrial surfactants. A significant part of her research delves into volatile molecule adsorption and desorption at interfaces, examining compounds like menthol, geraniol, linalool, benzyl acetate, and citronellol, widely used in personal care products and medicine. Her studies provide critical insights into optimizing formulations for enhanced stability, efficiency, and sustainability. Through collaborations with Unilever, S. C. Johnson, and the National Science Fund of Bulgaria, she applies her findings to industrial applications. Her work contributes to improving product performance, environmental sustainability, and the development of novel surfactant-based systems, making significant advancements in colloid and interface science.

Publication Top Notes:

“Quantitative characterization of the mass transfer of volatile amphiphiles between vapor and aqueous phases: Experiment vs theory”

“Kinetics of transfer of volatile amphiphiles (fragrances) from vapors to aqueous drops and vice versa: Interplay of diffusion and barrier mechanisms”