Dr. Pradip Debnath | Environmental Chemistry | Best Paper Award

Dr. Pradip Debnath | Environmental Chemistry | Best Paper Award

Assistant Professor | Rajarshi College of Education and Skill | India

Dr. Pradip Debnath is a dedicated researcher in Transport Geography and Regional Planning, with an emphasis on sustainable regional development, spatial mobility, and accessibility. His research explores how transportation networks, particularly highway systems, influence regional growth, community well-being, and spatial transformation. In addition to his transport geography work, he has significantly contributed to wetland ecosystem management, emphasizing the integration of remote sensing, GIS, and geospatial analytics for sustainable environmental monitoring. His studies on Rudrasagar Lake, a Ramsar site in Tripura, provide valuable insights into anthropogenic impacts on wetland health, biodiversity, and hydro-chemical dynamics. His research outputs include interdisciplinary work linking transport infrastructure with environmental sustainability and socio-economic resilience. Dr. Debnath has served as a peer reviewer for six articles across five international journals and maintains an active association with the American Journal of Traffic and Transportation Engineering. According to Scopus, his scholarly contributions include 5 documents, 24 citations, and an h-index of 2, reflecting a growing impact in both geography and environmental science. His research blends geoinformatics, climate resilience, and transport network analysis to address the challenges of regional development and ecological stability in Northeast India and beyond.

Profiles: Scopus | Orcid

Featured Publications : 

  • Debnath, P., Biswas, A., Chaudhuri, P., & Mitra, S. (2025). Assessment of hydro-chemical characteristics and pollution status in Rudrasagar Lake ecosystem integrating pollution indices and geospatial techniques: A framework for sustainable wetland management. Cleaner Water, 4, 100142.

  • Debnath, P., Biswas, A., Ghosh, A., & Mitra, S. (2024). Exploring wetland health and its contributions to community well-being entities: Perspectives from the Rudrasagar Lake area, Tripura. Indian Journal of Landscape Systems and Ecological Studies, 47(2), 138–161.

  • Debnath, P., Roy, S., Bharadwaj, S., Hore, S., Nath, H., Mitra, S., & Ciobotaru, A. M. (2023). Application of multivariable statistical and geo-spatial techniques for evaluation of water quality of Rudrasagar wetland, the Ramsar site of India. Water, 15(23), 4109.

  • Roy, S., Debnath, P., Vulevic, A., & Mitra, S. (2023). Incorporating climate change resilience in India’s railway infrastructure: Challenges and potential. Mechatron. Intell. Transp. Syst., 2(2).

  • Debnath, P., Roy, S., Hore, S., & Mitra, S. (2023). Mapping of optimum freight route by using hybrid VNS algorithm to sustain the economic viability of a landslide-prone area: A case study of Tripura. National Academy Science Letters.

Assoc. Prof. Dr. Yun Zhang | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Yun Zhang | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Yun Zhang  , Environmental Chemistry , Faculty at  Lanzhou University , China

Dr. Yun Zhang is an Associate Professor at Lanzhou University, China, with extensive expertise in environmental chemistry and nanomaterials. She earned her Ph.D. from Lanzhou University and the University of Vienna, specializing in porous chelating adsorbents and ionic liquids. Dr. Zhang has held academic positions at Lanzhou University and conducted postdoctoral research at Georgia Institute of Technology. Her research bridges environmental science and materials chemistry, focusing on the development of advanced nanostructures for pollutant detection and removal. Dr. Zhang has led several national and provincial research projects on catalysts and adsorbents for environmental remediation. Her contributions are recognized with multiple prestigious awards, including the International Postdoctoral Exchange Fellowship. She is also an active peer reviewer for leading journals such as Chemosphere and Journal of Hazardous Materials. Her innovative work on SERS-based pollutant detection and polymer-nanoparticle composites continues to impact sustainable environmental solutions.

Professional Profile : 

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Yun Zhang’s academic journey, marked by international collaboration, advanced research on nanostructured materials for environmental remediation, and successful leadership in funded projects, makes her a highly suitable candidate for a “Best Researcher Award.” Her work is innovative, globally relevant, and reflects a consistent trajectory of excellence and contribution to both fundamental and applied science. She exemplifies the qualities of a researcher who translates high-impact science into real-world environmental solutions. Dr. Yun Zhang fulfills the criteria expected of a “Best Researcher Award” recipient. Her research record demonstrates scientific innovation, international recognition, and societal relevance. Based on her proven capabilities, scholarly achievements, and impactful contributions to environmental chemistry and nanotechnology, she is strongly recommended as a deserving nominee for the “Best Researcher Award”.

🎓Education:

Dr. Yun Zhang completed her Ph.D. in Environmental Chemistry (2008–2011) through a joint program between Lanzhou University and the University of Vienna, where she focused on porous chelating adsorbents and ionic liquids for environmental applications. Prior to that, she earned her Master’s degree in Environmental Chemistry (2005–2008) from Lanzhou University, with research centered on atmospheric particles, PAHs, and analytical methods like GC-MS. Her undergraduate training in Environmental Science (2001–2005), also from Lanzhou University, laid a solid foundation in environmental monitoring and pollution analysis. The interdisciplinary nature of her academic training—spanning inorganic chemistry, environmental science, and polymer technology—has equipped her with a comprehensive approach to tackling modern environmental challenges through material innovation and chemical analysis.

🏢Work Experience:

Dr. Yun Zhang currently serves as an Associate Professor in the Department of Environmental Science at Lanzhou University, a role she has held since December 2019. She began her academic career as a Lecturer in the Institute of Polymer Science & Engineering at the same university from 2010 to 2016. From 2016 to 2018, she expanded her international research experience during a postdoctoral fellowship in Materials Science and Engineering at Georgia Institute of Technology, USA, where she developed expertise in nanostructured materials for pollutant sensing and degradation. Returning to Lanzhou University, she resumed teaching and research as a Lecturer (2018–2019) before her promotion. Dr. Zhang’s career reflects a dynamic blend of teaching, mentoring, and high-impact research across material science, environmental remediation, and nanotechnology. Her interdisciplinary experience has enabled her to lead cutting-edge research projects and mentor emerging scholars in environmental chemistry.

🏅Awards: 

Dr. Yun Zhang has received several prestigious awards recognizing her academic excellence and international research contributions. In 2015, she was selected for the International Postdoctoral Exchange Fellowship Project (2016–2018), supporting her research tenure at Georgia Tech. She earned the Bao Gang Education Scholarship in 2011, acknowledging her outstanding academic record. That same year, she also received the Scholarship Award for Excellent Doctoral Student, highlighting her impactful contributions during her Ph.D. studies. Earlier, in 2010, she was honored with a joint doctoral scholarship by the CSC (China Scholarship Council) and FWF (Austrian Science Fund), which facilitated her research at the University of Vienna. These accolades reflect not only her commitment to scientific excellence but also her capacity to contribute meaningfully to global research collaborations. Dr. Zhang’s recognition at national and international levels demonstrates her status as a leading figure in environmental chemistry and materials science.

🔬Research Focus:

Dr. Yun Zhang’s research integrates environmental chemistry, materials science, and nanotechnology to develop advanced solutions for pollution control. She specializes in the precise synthesis of noble metal nanostructures such as Ag nanocubes and Ag@Pt-Rh core-frame nanocrystals, which are employed in sensitive detection and catalytic degradation of organic pollutants using surface-enhanced Raman spectroscopy (SERS). Her work also explores polymer-nanoparticle composite adsorbents for the extraction of heavy metals, as well as the application of ionic liquids (ILs) in micro-pollutant removal. A distinctive feature of her research is the atomic layer deposition (ALD) technique, which enables controlled nanomaterial design for environmental applications. Her interdisciplinary projects are supported by competitive grants, emphasizing applied innovations for antibiotic degradation, mercury detection, and bimetallic catalysis. Through the integration of chemistry and environmental science, Dr. Zhang addresses pressing ecological challenges while advancing fundamental research in nanomaterials.

Publication Top Notes:

1. A Specific Time Lag Regulation of Soil Moisture Across Layers on Soil Salinization in the Northeast Tibetan Plateau Agroecosystem

2. Differential Quantitative Analysis of Carbon Emission Efficiency of Gansu Manufacturing Industry in 2030

3. Multi-Scenario Land Use/Cover Change and Its Impact on Carbon Storage Based on the Coupled GMOP-PLUS-InVEST Model in the Hexi Corridor, Chin

4. Hydrothermal Conditions in Deep Soil Layer Regulate the Interannual Change in Gross Primary Productivity in the Qilian Mountains Area, China

5. Syntheses, Plasmonic Properties, and Catalytic Applications of Ag–Rh Core-Frame Nanocubes and Rh Nanoboxes with Highly Porous Walls

6. Thiazole Orange-Modified Carbon Dots for Ratiometric Fluorescence Detection of G-Quadruplex and Double-Stranded DNA

7. Enriching Silver Nanocrystals with a Second Noble Metal

8. Observing the Overgrowth of a Second Metal on Silver Cubic Seeds in Solution by Surface-Enhanced Raman Scattering

9. Pt–Ag Cubic Nanocages with Wall Thickness Less Than 2 nm and Their Enhanced Catalytic Activity Toward Oxygen Reduction

10. Fabrication of Magnetic Alginate Beads with Uniform Dispersion of CoFe₂O₄ by the Polydopamine Surface Functionalization for Organic Pollutants Removal

11. Facile One-Pot Assembly of Adhesive Phenol/Fe³⁺/PEI Complexes for Preparing Magnetic Hybrid Microcapsules