Assoc. Prof. Dr. Paresh Patel | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Paresh Patel | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Paresh Patel , Uka Tarsadia University , India

Dr. Paresh N. Patel, is an Indian chemist and academic leader, currently serving as the I/c Director of the Tarsadia Institute of Chemical Science, Uka Tarsadia University, Gujarat. With over 12 years of experience in teaching, research, and administration, Dr. Patel has significantly contributed to organic synthesis, nanotechnology, and bio-sensor development. He has authored 42 peer-reviewed publications, holds five patents, and supervised numerous MSc and PhD scholars. As an editor and reviewer for reputed journals, he actively engages in the scientific community. Dr. Patel has been instrumental in securing several high-value research grants, collaborating with academia and industry to advance chemical sciences.

Professional Profile

Orcid

Scopus

Summary of Suitability for Award:

Dr. Paresh N. Patel is an accomplished researcher with a prolific career spanning over a decade in chemical sciences. His expertise lies in organic synthesis, nanotechnology, and biosensor development, supported by 42 international publications, five patents, and significant research grants totaling over ₹3 crore. He has successfully led and collaborated on high-impact projects funded by prestigious organizations such as DST, GUJCOST, GSBTM, and DBT, demonstrating his ability to secure competitive funding and deliver innovative outcomes. Dr. Paresh N. Patel’s exceptional achievements, diverse research portfolio, and impactful contributions make him highly suitable for the “Best Researcher Award.” His innovative work has advanced the frontiers of chemical sciences and demonstrated practical relevance, aligning with the award’s objective of recognizing excellence in research.

🎓Education:

Dr. Paresh N. Patel completed his PhD in Organic Synthesis from Sardar Patel University in 2013, after earning an MSc in Organic Chemistry (2009) and a BSc in Chemistry (2007) from the same institution. His academic training provided a robust foundation for his research in asymmetric synthesis, nanomaterials, and renewable resources. During his doctoral studies, he specialized in single-crystal X-ray diffraction and advanced organic methodologies. He also received an Institute Postdoctoral Fellowship at IIT Madras, where he further honed his expertise in heterocyclic compound synthesis. Over his academic journey, Dr. Patel has consistently demonstrated academic excellence, evident in his comprehensive research output and accolades for innovation.

🏢Work Experience:

Dr. Paresh N. Patel has an illustrious career spanning academia and research. He has served as an I/c Director at Tarsadia Institute of Chemical Science since 2019 and was promoted to Associate Professor in 2024. Previously, he was an Assistant Professor (2016–2024) at Uka Tarsadia University and a Postdoctoral Fellow at IIT Madras (2013–2016), contributing to teaching and research in organic chemistry. He has also worked as a Fellow at NIF-Ahmedabad and an SRF at Sardar Patel University. His roles have encompassed teaching spectroscopy, nanotechnology, and stereochemistry, as well as guiding MSc, PhD, and Postdoctoral scholars. Dr. Patel’s leadership in organizing scientific events and workshops reflects his dedication to fostering innovation and skill development in chemical sciences.

🏅Awards: 

Dr. Paresh N. Patel has earned numerous accolades for his contributions to chemical research. He was awarded the prestigious DST Inspire Grant (₹24 lakh) and several significant project grants, including ₹30 lakh from GUJCOST and ₹32 lakh from GSBTM. He also received an International Travel Grant from DBT to present his research in the USA and was a recipient of a ₹10 lakh ICSR-IIT Madras project fund. His excellence in academia has been recognized through various seed grants from Uka Tarsadia University and industrial-funded research projects. Additionally, his proposals under DST-SYST and DST-TDP are under consideration, with a substantial ₹3 crore DST-FIST project in preparation. These accolades highlight Dr. Patel’s commitment to advancing scientific knowledge and fostering impactful collaborations.

🔬Research Focus:

Dr. Paresh N. Patel’s research centers on innovative applications of organic chemistry and nanotechnology. His projects include developing nano-scale organic biosensors (DST-SERB) and synthesizing gold nanoparticles from renewable resources for organic synthesis (GSBTM). He also explores asymmetric synthesis using biocatalysts and collaborates with industry to develop biotechnology for hydrogen and ethanol production. His research portfolio includes several high-value grants, such as DST Inspire, GUJCOST, and GSBTM. Dr. Patel’s interdisciplinary approach integrates materials science, biotechnology, and organic chemistry, aiming to address environmental and industrial challenges. His work not only advances theoretical understanding but also offers practical solutions in chemical and biosensor technology.

Publication Top Notes:

Title: Study of lawsone and its modified disperse dyes derived by triple cascade reaction: dyeing performance on nylon and polyester fabrics
Authors: Patel, N.C., Desai, D.H., Patel, P.N.
Year: 2024
Citations: 2

Title: Selective detection of azelnidipine in pharmaceuticals via carbon dot mediated spectrofluorimetric method: A green approach
Authors: Lodha, S.R., Gore, A.H., Merchant, J.G., Shah, S.A., Shah, D.R.
Year: 2024
Citations: 1

Title: Benzothiophene based semi-bis-chalcone as a photo-luminescent chemosensor with real-time hydrazine sensing and DFT studies
Authors: Oza, N.H., Kasundra, D., Deshmukh, A.G., Boddula, R., Patel, P.N.
Year: 2024
Citations: 0

Title: A lawsone based novel disperse dyes with DHPMs scaffold: dyeing studies on nylon and polyester fabric
Authors: Patel, N.C., Talati, K.S., Patel, P.N.
Year: 2024
Citations: 0

Title: Surface functionalized graphene oxide integrated 9,9-diethyl-9H-fluoren-2-amine monohybrid nanostructure: Synthesis, physicochemical, thermal and theoretical approach towards optoelectronics
Authors: Borane, N., Boddula, R., Odedara, N., Jirimali, H., Patel, P.N.
Year: 2024
Citations: 1

Title: Fungus reinforced sustainable gold nanoparticles: An efficient heterogeneous catalyst for reduction of nitro aliphatic, aromatic and heterocyclic scaffolds
Authors: Deshmukh, A.G., Rathod, H.B., Patel, P.N.
Year: 2023
Citations: 1

Title: Green and sustainable bio-synthesis of gold nanoparticles using Aspergillus Trinidadensis VM ST01: Heterogeneous catalyst for nitro reduction in water
Authors: Deshmukh, A.G., Mistry, V., Sharma, A., Patel, P.N.
Year: 2023
Citations: 3

Title: Design and synthesis of chalcone mediated novel pyrazoline scaffolds: Discovery of benzothiophene comprising antimicrobial inhibitors
Authors: Tandel, S.N., Kasundra, D.V., Patel, P.N.
Year: 2023
Citations: 2

Title: Studies of novel benzofuran based chalcone scaffolds: A dual spectroscopic approach as selective hydrazine sensor
Authors: Tandel, S.N., Deshmukh, A.G., Rana, B.U., Patel, P.N.
Year: 2023
Citations: 4

Title: Novel chalcone scaffolds of benzothiophene as an efficient real-time hydrazine sensor: Synthesis and single crystal XRD studies
Authors: Tandel, S.N., Mistry, P., Patel, P.N.
Year: 2023
Citations: 4

 

 

 

Sabita Nayak | Organic Synthesis | Best Researcher Award

Dr. Sabita Nayak | Organic Synthesis | Best Researcher Award

Doctorate at  Ravenshaw University, India

Dr. Sabita Nayak is the Head of the Department of Chemistry at Ravenshaw University, Cuttack, Odisha. With a rich academic background and extensive research experience, Dr. Nayak has made significant contributions to the field of chemistry, focusing on the synthesis of novel hybridized molecules and their biological activities.

Author Metrics

Scopus profile

Dr. Nayak has an impressive portfolio of over 49 publications in peer-reviewed journals, including high-impact journals such as ChemistrySelect, Bioorganic Chemistry, and Carbohydrate Research. Her work has been cited extensively, reflecting her significant impact in the field of chemical research

Education

Dr. Nayak earned her Ph.D. in Chemistry from Pune University in 2008, where she worked on the total synthesis of complex molecules. Her educational journey includes an M.Phil. in Chemistry from Utkal University, an M.Sc. in Chemistry from Ravenshaw University, and a B.Sc. in Chemistry from Utkal University.

Research Focus

Her research primarily explores the synthesis of small novel hybridized molecules, heterocyclic and carbocyclic molecules through Diels-Alder and Michael Addition Reactions, and carbohydrate sugar products. She is particularly interested in the biological activities of these synthesized molecules, contributing to advancements in medicinal chemistry.

Professional Journey

Dr. Nayak began her career as a Research Associate at Chembiotek Pharma Ltd. and later as a Postdoctoral Researcher at the University of Southwestern Medical Research Center, Dallas, Texas. Since 2010, she has been serving as an Assistant Professor in Chemistry at Ravenshaw University, where she continues to advance her research and teaching.

Honors & Awards

Dr. Nayak was awarded the “Dr. Mahamaya Pattnaik Smruti Samman” by Bigyan Prachar Samiti in 2022, recognizing her outstanding contributions to the field of chemistry.

Publications Noted & Contributions

Dr. Nayak’s notable publications include her research on [4+2]-cycloaddition reactions, thia-Michael addition-oxidation reactions, and the synthesis of 2H-chromene-based hydrazone derivatives. Her contributions have significantly advanced the understanding of synthetic methodologies and their applications in drug discovery.

Improving the therapeutic window of anticancer agents by β-cyclodextrin encapsulation: Experimental and theoretical insights

Authors: Priyadarsini Mishra, Kumar Sahoo, Mohapatra, Nayak, Nath Kundu

Journal: Journal of Molecular Liquids

Year: 2024

Volume: 404

Page: 124967

Abstract: The study investigates the use of β-cyclodextrin (β-CD) encapsulation to enhance the therapeutic window of anticancer agents. Through a combination of experimental data and theoretical modeling, the research provides insights into how β-CD can improve the efficacy and reduce the side effects of anticancer drugs by modulating their release and bioavailability. The findings highlight the potential of β-CD as a valuable tool in drug delivery systems for cancer therapy.

New 2H-Chromene-Based Hydrazone Derivatives as Promising Anti-Breast Cancer Agents: Efficient Synthesis, Spectral Characterization, Molecular Docking, and ADMET Studies

Authors: Shankar Panda, Samanta, Sudha Ambadipudi, Nayak, Mohan Behera, Samanta

Journal: ChemistrySelect

Year: 2024

Volume: 9(15)

Article Number: e202400115

Abstract: This paper presents the synthesis of novel 2H-chromene-based hydrazone derivatives and their evaluation as potential anti-breast cancer agents. The study includes detailed spectral characterization, molecular docking studies, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. The results suggest that these derivatives exhibit promising anti-cancer activity and could be developed into effective therapeutic agents for breast cancer treatment.

Transition-Metal Catalyzed [4+2]-Cycloaddition Reactions: A Sexennial Update

Authors: Panda, Mohapatra, Ansar Ahemad, Nayak, Mohapatra

Journal: ChemistrySelect

Year: 2024

Volume: 9(12)

Article Number: e202303643

Abstract: This review provides a comprehensive update on transition-metal catalyzed [4+2]-cycloaddition reactions over the past six years. It covers recent advances in reaction conditions, catalyst development, and applications in organic synthesis. The review highlights key developments and trends in the field, offering insights into how these reactions have evolved and their impact on synthetic chemistry.

Base Catalyzed One-Pot Thia-Michael Addition-Oxidation Reaction of Hetero-Aromatic Thiols to 2-Aryl-3-Nitro-2H-Chromenes and Their Antibacterial Evaluation

Authors: Samanta, Panda, Mohapatra, Bhattacharya, Sahoo

Journal: New Journal of Chemistry

Year: 2024

Volume: 48(11)

Pages: 4953–4959

Abstract: The article explores a base-catalyzed one-pot thia-Michael addition-oxidation reaction to synthesize 2-aryl-3-nitro-2H-chromenes from hetero-aromatic thiols. The synthesized compounds were evaluated for their antibacterial activity. The study demonstrates the efficiency of the proposed method in creating novel chromene derivatives with potential antimicrobial properties.

Palladium-Catalyzed Facile Synthesis of Imidazo[1,2-a]Pyridine-Flavone Hybrids and Evaluation of Their Antiplasmodial Activity

Authors: Raiguru, Panda, Mohapatra, Nayak

Journal: Journal of Molecular Structure

Year: 2023

Volume: 1294

Article Number: 136282

Abstract: This research presents a palladium-catalyzed approach for the synthesis of imidazo[1,2-a]pyridine-flavone hybrids. The study includes an evaluation of the antiplasmodial activity of these hybrids, highlighting their potential as new candidates for malaria treatment. The synthesis method is described as straightforward and efficient, offering a valuable addition to the development of antimalarial agents.

Research Timeline

Dr. Nayak’s research career began with her doctoral work at Pune University and has evolved through significant projects funded by agencies such as SERB, UGC, and CSIR. Her research timeline includes the completion of several projects and the initiation of ongoing studies in collaboration with esteemed institutions.

Collaborations and Projects

Dr. Nayak has collaborated with various researchers and institutions, including National Chemical Laboratory, Pune, and University of Southwestern Medical Research Center, Dallas. Her projects encompass a range of topics, from synthetic methodologies to biological evaluations, reflecting her broad expertise and collaborative approach in advancing chemical research.