Kamal Kishore | Physical Organic Chemistry | Best Researcher Award

Prof. Kamal Kishore | Physical Organic Chemistry | Best Researcher Award

Eternal University | India

Prof. Kamal Kishore is a distinguished Professor of Chemistry and Biochemistry at Eternal University, Baru Sahib, Himachal Pradesh, India. With more than fourteen years of teaching experience and valuable exposure in the pharmaceutical industry, he has made impactful contributions to higher education and research in chemistry. He earned his Ph.D. in Chemistry from Barkatullah University, Bhopal, under the supervision of Prof. S.K. Upadhyaya, focusing on the physicochemical, thermal, and acoustical behavior of terbium soaps. Over the course of his career, he has held academic positions ranging from Lecturer to Professor, establishing himself as an accomplished educator, mentor, and researcher. His research has been published in reputed international and national journals, with a focus on surfactants, thermodynamics, nanotechnology, and environmental chemistry. Alongside his teaching and research, he has served as a resource person for academic bodies and delivered invited lectures at several institutions, inspiring students and fellow researchers alike.

Professional Profile

Scopus

Orcid

Education

Prof. Kamal Kishore has a strong academic background that integrates both chemistry and education. He completed his Ph.D. in Chemistry at Barkatullah University, Bhopal, where his thesis explored the thermal, acoustical, and physicochemical behavior of terbium soaps. Prior to this, he earned a Master of Science degree in Chemistry from Barkatullah University, developing a deeper understanding of advanced chemical principles and laboratory techniques. He also pursued a Bachelor of Education in Science at Jammu University, equipping himself with pedagogical training and skills essential for an academic career. His journey into higher education began with a Bachelor of Science (Non-Medical) from Himachal Pradesh University, Shimla, where he studied core subjects such as physics, chemistry, and mathematics. In addition, he qualified the Himachal Pradesh Teachers Eligibility Test (HPTET), further strengthening his academic and teaching credentials. This educational path has laid a solid foundation for his dual role as a teacher and researcher.

Professional Experience

Prof. Kamal Kishore brings extensive professional experience in academia and industry. Currently serving as Professor in the Department of Chemistry and Biochemistry at Eternal University, Baru Sahib, he has previously held positions as Associate Professor and Assistant Professor at the same institution. He has also contributed his expertise to other reputed universities and colleges in Himachal Pradesh, where he taught chemistry at both undergraduate and postgraduate levels. His academic journey began as a Lecturer in Applied Sciences, where he nurtured young learners and established himself as a dedicated educator. Beyond academia, he gained early professional exposure in the pharmaceutical industry as an IPQA Chemist at Alkem Laboratories, Baddi, where he was engaged in quality assurance processes. Over the years, he has steadily advanced in his career through diverse roles, developing expertise in teaching, research, mentoring, and curriculum development. His professional growth demonstrates his dedication to education and scientific advancement.

Awards 

Prof. Kamal Kishore has been honored with several awards and recognitions for his academic achievements, teaching excellence, and community involvement. During his early education, he earned distinction for securing top positions at the school and state levels and was awarded merit certificates for outstanding performance in examinations and extracurricular activities, including participation in the Republic Day Parade. In his academic career, he was recognized as a disciplined and dedicated faculty member at Career Point University and was honored with the Best Teacher Award for his contribution to teaching and mentoring students. At Eternal University, he received an Award of Honor for his role in a national sports championship and an Award of Appreciation during a university agricultural fair. He has also been certified as a Publons Academy Mentor, highlighting his contributions to the global research and peer review community. Collectively, these recognitions reflect his excellence in academics, research, and service.

Research Interests 

Prof. Kamal Kishore’s research interests lie primarily in physical chemistry, surfactants, thermodynamics, nanotechnology, and environmental chemistry. His doctoral research focused on the physicochemical, acoustical, and thermal behavior of terbium soaps, a theme that has inspired many of his subsequent studies. He has conducted extensive work on the self-assembly behavior of surfactants, micellization processes, and ultrasonic velocity studies, which contribute to a deeper understanding of colloid and interface science. His research further extends to the development of nanocatalysts for oxidation reactions, biosensors for the removal of heavy metals from wastewater, and green chemistry approaches for environmental sustainability. He has also contributed book chapters and collaborated with fellow researchers on interdisciplinary projects that combine theory with applied solutions. His work emphasizes innovation in addressing environmental challenges through chemistry, linking fundamental science to real-world applications in clean water technologies, sustainable nanomaterials, and environmentally friendly industrial processes.

Publication Top Notes

Title: Thermodynamics and interfacial properties for micellization of cationic surfactant with amino acid and drug at different temperatures
Year: 2024
Citations: 2

Title: Removal of Heavy Metals From Waste Water Using Natural Adsorbent—A Review
Year: 2024

Title: Ultrasonic velocity and critical micellar concentration of amino acid surfactant mixed with other surfactants at different temperatures
Year: 2019
Citations: 6

Title: Investigating oxidation of formaldehyde over Co, Ni and Cu incorporated SBA-15 mesoporous materials
Year: 2018
Citations: 11

Title: Leaf senescence: an overview
Year: 2016
Citations: 76

Conclusion 

In conclusion, Prof. Kamal Kishore is a highly accomplished academician and researcher whose career reflects excellence in teaching, research, and professional service. With qualifications in chemistry and education, he has successfully combined subject expertise with innovative pedagogy, making significant contributions to both student learning and research advancement. His recognition as a best teacher, resource person, and mentor underscores his influence in shaping the academic community, while his publications and research collaborations highlight his contributions to scientific knowledge. His work on surfactants, thermodynamics, and nanotechnology demonstrates a commitment to using chemistry as a tool for solving practical environmental and industrial challenges.

Mrs. Mercedes Bertotto | Organic Chemistry | Women Researcher Award

Mrs. Mercedes Bertotto | Organic Chemistry | Women Researcher Award

Mrs. Mercedes Bertotto , Organic Chemistry , Researcher in Chemometrics at Wageningen University & Research , Netherlands

Dr. Mercedes Bertotto is a distinguished chemical engineer and food scientist with over 12 years of specialized experience in spectroscopic techniques, chemometrics, and quality control. Based in The Netherlands, she is currently a lecturer at Wittenborg University of Applied Sciences and founder of Vibralytics.nl, promoting sustainable and data-driven innovations in the agri-food sector. Previously, she was a researcher at Wageningen Food and Biobased Research, where she led spectral sensing projects integrating NIR, MIR, and Raman spectroscopy with machine learning. Her earlier role at SENASA, Argentina’s National Reference Laboratory, showcased her leadership in GC-MS residue analysis and chemometric modeling. Fluent in English, Spanish, and Dutch, Dr. Bertotto bridges scientific excellence with cross-cultural communication, driving sustainable solutions in food safety and circular materials. Her contributions to academia, research, and entrepreneurship reflect a strong commitment to innovation, international collaboration, and applied chemical sciences.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Mercedes Bertotto stands out as an exceptionally qualified candidate for the “Women Researcher Award” due to her profound scientific expertise, leadership, and innovation across multiple sectors. With a Doctorate in Chemical Engineering and a strong academic foundation in Food Science and Technology, she exemplifies excellence in applied and theoretical research. Her 12+ years of impactful work—from Argentina’s SENASA National Reference Laboratory to the Netherlands’ Wageningen Food and Biobased Research—reflect her global research footprint. She has made significant contributions in spectral sensing, chemometrics, machine learning, and food quality control. Moreover, her entrepreneurial initiative as the founder and CEO of Vibralytics.nl demonstrates her commitment to translating science into real-world, sustainable solutions. Dr. Mercedes Bertotto is highly suitable for the “Women Researcher Award’. Her multidisciplinary achievements, pioneering role in spectral analytics, dedication to sustainable food systems, and entrepreneurial leadership in a male-dominated field exemplify the qualities the award seeks to recognize. Her career reflects not only scientific merit but also her inspirational impact as a woman in science, making her a deserving and empowering candidate for this honor.

🎓Education:

Dr. Bertotto holds a Doctorate in Chemical Engineering from the University of Buenos Aires, where her thesis focused on modeling drying and tempering processes of rice (IRGA 424). Her research included dynamic mechanical analysis and mathematical modeling of glass transition temperature, achieving an outstanding score of 10/10. She also holds a Master’s in Food Science and Technology from the Faculty of Pharmacy and Biochemistry, University of Buenos Aires. Her academic formation enabled her to work on food preservation, quality control, and raw material analysis using both physical and chemical techniques. Her educational foundation is rooted in experimental precision, mathematical rigor, and industrial application. This robust background has allowed her to seamlessly bridge theory with practical laboratory and industry-based problem-solving. Her education reflects interdisciplinary training, combining engineering, food science, and analytical chemistry—providing her with the ideal base for impactful research in sustainable biobased materials and food safety.

🏢Work Experience:

Dr. Bertotto brings an extensive and diverse professional background. She currently lectures in Information Management and Data Analytics at Wittenborg University and leads Vibralytics.nl, a company pioneering AI-driven spectroscopy for agri-food applications. Between 2022–2024, she was a spectral sensing researcher at Wageningen Food and Biobased Research, using hyperspectral imaging and chemometrics (PCA, PLS, CNN) for quality control. From 2010 to 2022, she worked at SENASA in Argentina, specializing in NIR/FTIR microscopy, GC-MS, and regulatory compliance in food safety. As a university professor, she taught chemometric tools for doctoral candidates, and she also served as a consultant at SoftLab, contributing to petroleum industry applications of NIR. Her expertise encompasses spectroscopy hardware (Specim FX10/17, MicroNIR, LabSpec), data tools (R, MATLAB), and AI-based modeling. This blend of research, teaching, and consulting makes her a well-rounded scientist, with real-world and academic impact across multiple industries.

🏅Awards: 

While specific awards are not explicitly listed, Dr. Mercedes Bertotto’s recognitions include multiple peer-reviewed publications, oral and poster presentations at prestigious conferences, and leadership roles in top-tier research institutions like Wageningen University. Her work was accepted for presentation at the 38th EFFoST International Conference (2024) and ICNIRS 2023, both internationally acclaimed events in food science and spectroscopy. She has also contributed to publicly recognized innovation efforts in Argentina, featured in national science communications (e.g., Argentina.gob.ar and API-Portal). Her appointment as a doctoral-level professor and selection as a founder and CEO of a research-driven company demonstrates academic and entrepreneurial recognition. Moreover, her trilingual fluency and international engagement serve as indicators of her global scientific outreach and influence. These distinctions—academic, institutional, and professional—reflect her commitment to innovation, research excellence, and interdisciplinary problem-solving in chemical engineering and food safety.

🔬Research Focus:

Dr. Bertotto’s research is grounded in analytical chemistry, spectral sensing, and chemometric modeling applied to food and agricultural systems. Her focus lies in leveraging Near-Infrared (NIR), Mid-Infrared (MIR), FTIR microscopy, Raman spectroscopy, and gas chromatography-mass spectrometry (GC-MS) to improve food quality, detect contaminants, and enable circular and sustainable material flows. She specializes in multivariate analysis (PCA, PLS-DA, ANN, CNN) for interpreting complex spectral data in real-time monitoring systems. Her work integrates hyperspectral imaging with AI-driven tools to predict physical and chemical properties of biological materials, such as fungal susceptibility in tomatoes or nutrient profiling in dairy. She is also deeply involved in modeling moisture and thermal behavior in grains like rice. Her research bridges fundamental science with applied industry solutions—creating novel analytical frameworks that optimize safety, quality, and sustainability in bio-based materials, food systems, and environmental monitoring.

Publication Top Notes:

1. Predicting fungal infection sensitivity of sepals in harvested tomatoes using imaging spectroscopy and partial least squares discriminant analysis

2. Comparison between Chemometrics and Machine Learning for the Prediction of Macronutrients in Fresh Cheeses Using Imaging Spectroscopy

3. Detection of Animal By‑Products in Bone Ashes by Near Infrared Spectroscopy Coupled with Microscopy

  citation : 1

 

 

Prof. Mohammad Gholinejad | Organic Chemistry | Best Researcher Award

Prof. Mohammad Gholinejad | Organic Chemistry | Best Researcher Award 

Prof. Mohammad Gholinejad | Organic Chemistry | Associate Professor of Chemistry at IASBS, Iran

Dr. Mohammad Gholinejad is an Associate Professor of Organic Chemistry at the Institute for Advanced Studies in Basic Sciences (IASBS), Iran, he specializes in catalysis, organic synthesis, and nanomaterials. He completed his Ph.D. from Shiraz University under the supervision of Prof. Habib Firouzabadi, focusing on palladium, copper, iron, and silver nanoparticles in carbon-carbon and carbon-heteroatom bond formation. He undertook a sabbatical at the University of Alicante, Spain, with Prof. Carmen Najera, working on phosphane-free Suzuki-Miyaura coupling. With an h-index of 36 and over 3,400 citations, Dr. Gholinejad has significantly contributed to the field of homogeneous and heterogeneous catalysis. His expertise extends to TGA, GC, NMR, and XPS techniques. He actively teaches advanced organic chemistry and heterocyclic chemistry, mentoring numerous students. His work bridges fundamental research and practical applications, making him a key figure in modern catalysis.

Professional Profile :                       

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Mohammad Gholinejad is a highly accomplished researcher in the field of organic chemistry, specializing in catalysis, nanoparticle applications, and green chemistry. With an h-index of 36 and over 3,400 citations, his research contributions have significantly impacted the scientific community. His expertise in palladium, copper, iron, and silver nanoparticles for carbon-carbon and carbon-heteroatom bond formation reactions has led to innovative methodologies that are both efficient and environmentally friendly. He has held a prestigious sabbatical position at the University of Alicante, Spain, and currently serves as an Associate Professor at the Institute for Advanced Studies in Basic Sciences (IASBS). His extensive publication record, leadership in advanced organic chemistry courses, and hands-on experience with instrumental techniques further highlight his research excellence. Given his outstanding research output, impact on organic synthesis, and contributions to sustainable chemistry, Dr. Gholinejad is a highly suitable candidate for the “Best Researcher Award.” His work exemplifies innovation, academic excellence, and real-world application, making him a strong contender for this recognition.

🎓Education:

Dr. Mohammad Gholinejad obtained his Ph.D. in Organic Chemistry from Shiraz University, Iran (2008-2012), where he investigated carbon-carbon and carbon-heteroatom bond formation using metal nanoparticles. His research introduced efficient catalytic systems for environmentally friendly organic transformations. His M.Sc. in Organic Chemistry (2006-2008) at Shiraz University focused on phosphinite ligands in organic synthesis. He earned his B.Sc. in Applied Chemistry from the University of Tabriz (2002-2006). In 2010, Dr. Gholinejad pursued a sabbatical at the University of Alicante, Spain, under Prof. Carmen Najera, working on phosphane-free Suzuki-Miyaura coupling. His academic journey has shaped his expertise in catalytic systems, green chemistry, and ligand design. His research integrates experimental and theoretical chemistry, leading to numerous high-impact publications. His strong analytical background and mastery of spectroscopic techniques have enhanced his contributions to organic synthesis and catalysis, making him a leading researcher in the field.

🏢Work Experience:

Dr. Mohammad Gholinejad is an Associate Professor at IASBS, Iran, where he has been engaged in research and teaching for over a decade. His teaching portfolio includes Advanced Organic Chemistry (Structure and Mechanisms), Organic Reactions and Synthesis, Heterocyclic Chemistry, and New Discussions in Organic Chemistry. His research focuses on designing novel catalytic systems using palladium, copper, and iron nanoparticles for sustainable organic transformations. He has extensive expertise in TGA, GC, NMR, and XPS, essential for analyzing catalytic reactions. During his sabbatical at the University of Alicante, Spain, he collaborated with Prof. Carmen Najera on phosphane-free Suzuki-Miyaura coupling in aqueous media. His work has led to numerous high-impact publications in prestigious journals. He actively supervises M.Sc. and Ph.D. students, contributing to the development of young researchers. His role at IASBS has been instrumental in advancing research on green and heterogeneous catalysis.

🏅Awards: 

Dr. Mohammad Gholinejad has received numerous prestigious awards and honors in recognition of his outstanding contributions to the field of organic chemistry. His work in catalysis and green chemistry has been widely acknowledged, earning him accolades from both national and international scientific communities. He has been recognized for his high-impact publications in reputed journals, reflecting his significant influence in the domain of sustainable chemical methodologies. His sabbatical at the University of Alicante, Spain, is a testament to his global research collaborations and expertise. Additionally, he has been honored with research grants and funding awards, enabling him to advance studies in nanoparticle catalysis and environmentally friendly synthetic processes. As an Associate Professor at the Institute for Advanced Studies in Basic Sciences (IASBS), he has received institutional recognition for his exemplary research, mentorship, and contributions to academic excellence. His achievements establish him as a leading researcher in organic synthesis and catalysis.

🔬Research Focus:

Dr. Mohammad Gholinejad’s research primarily focuses on the development of novel catalytic systems for organic transformations, particularly using palladium, copper, iron, and silver nanoparticles. His work has significantly advanced carbon-carbon and carbon-heteroatom bond formation reactions, leading to more efficient and environmentally sustainable chemical processes. By integrating nanotechnology with catalysis, he has contributed to the design of innovative, recyclable catalytic systems that minimize waste generation and reduce reliance on hazardous reagents. His expertise extends to green chemistry, where he develops eco-friendly methodologies for organic synthesis, emphasizing the use of non-toxic solvents, reusable catalysts, and sustainable reaction conditions. His pioneering research in heterogeneous catalysis has implications for pharmaceuticals, materials science, and industrial chemistry. Additionally, his work on functionalized nanomaterials has potential applications in energy storage and biomedical fields. Through high-impact publications and global collaborations, Dr. Gholinejad continues to drive advancements in synthetic methodologies, enhancing the efficiency and sustainability of modern chemistry.

Publication Top Notes:

Title: Magnetite (Fe₃O₄) Nanoparticles‐Catalyzed Sonogashira–Hagihara Reactions in Ethylene Glycol under Ligand‐Free Conditions
Authors: H. Firouzabadi, N. Iranpoor, M. Gholinejad, J. Hoseini
Citations: 174
Year: 2011

Title: One‐Pot Thioetherification of Aryl Halides Using Thiourea and Alkyl Bromides Catalyzed by Copper (I) Iodide Free from Foul‐Smelling Thiols in Wet Polyethylene Glycol (PEG 200)
Citations: 164

Title: Highly Efficient Three-Component Coupling Reaction Catalyzed by Gold Nanoparticles Supported on Periodic Mesoporous Organosilica with Ionic Liquid Framework
Citations: 154

Title: Palladium Nanoparticles Supported on Agarose as Efficient Catalyst and Bioorganic Ligand for C–C Bond Formation via Solventless Mizoroki–Heck Reaction and Sonogashira–Hagihara Reaction
Citations: 107

Title: Synthesis and Characterization of Magnetic Copper Ferrite Nanoparticles and Their Catalytic Performance in One-Pot Odorless Carbon-Sulfur Bond Formation Reactions
Citations: 98

Title: 2-Aminophenyl Diphenylphosphinite as a New Ligand for Heterogeneous Palladium-Catalyzed Heck–Mizoroki Reactions in Water in the Absence of Any Organic Co-Solvent
Citations: 93

Title: Copper Nanoparticles Supported on Agarose as a Bioorganic and Degradable Polymer for Multicomponent Click Synthesis of 1,2,3-Triazoles under Low Copper Loading in Water
Citations: 89

Title: Nitro Group Reduction and Suzuki Reaction Catalysed by Palladium Supported on Magnetic Nanoparticles Modified with Carbon Quantum Dots Generated from Glycerol and Urea
Citations: 83

Title: Copper Nanoparticles Supported on Starch Microparticles as a Degradable Heterogeneous Catalyst for Three-Component Coupling Synthesis of Propargylamines
Citations: 83

Title: Palladium Nanoparticles Supported on Agarose-Functionalized Magnetic Nanoparticles of Fe₃O₄ as a Recyclable Catalyst for C–C Bond Formation via Suzuki–Miyaura, Heck–Mizoroki Reactions
Citations: 77

Title: Recyclable Palladium-Catalyzed Sonogashira–Hagihara Coupling of Aryl Halides Using 2-Aminophenyl Diphenylphosphinite Ligand in Neat Water under Copper-Free Condition
Citations: 77

Assoc. Prof. Dr. Paresh Patel | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Paresh Patel | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Paresh Patel , Uka Tarsadia University , India

Dr. Paresh N. Patel, is an Indian chemist and academic leader, currently serving as the I/c Director of the Tarsadia Institute of Chemical Science, Uka Tarsadia University, Gujarat. With over 12 years of experience in teaching, research, and administration, Dr. Patel has significantly contributed to organic synthesis, nanotechnology, and bio-sensor development. He has authored 42 peer-reviewed publications, holds five patents, and supervised numerous MSc and PhD scholars. As an editor and reviewer for reputed journals, he actively engages in the scientific community. Dr. Patel has been instrumental in securing several high-value research grants, collaborating with academia and industry to advance chemical sciences.

Professional Profile

Orcid

Scopus

Summary of Suitability for Award:

Dr. Paresh N. Patel is an accomplished researcher with a prolific career spanning over a decade in chemical sciences. His expertise lies in organic synthesis, nanotechnology, and biosensor development, supported by 42 international publications, five patents, and significant research grants totaling over ₹3 crore. He has successfully led and collaborated on high-impact projects funded by prestigious organizations such as DST, GUJCOST, GSBTM, and DBT, demonstrating his ability to secure competitive funding and deliver innovative outcomes. Dr. Paresh N. Patel’s exceptional achievements, diverse research portfolio, and impactful contributions make him highly suitable for the “Best Researcher Award.” His innovative work has advanced the frontiers of chemical sciences and demonstrated practical relevance, aligning with the award’s objective of recognizing excellence in research.

🎓Education:

Dr. Paresh N. Patel completed his PhD in Organic Synthesis from Sardar Patel University in 2013, after earning an MSc in Organic Chemistry (2009) and a BSc in Chemistry (2007) from the same institution. His academic training provided a robust foundation for his research in asymmetric synthesis, nanomaterials, and renewable resources. During his doctoral studies, he specialized in single-crystal X-ray diffraction and advanced organic methodologies. He also received an Institute Postdoctoral Fellowship at IIT Madras, where he further honed his expertise in heterocyclic compound synthesis. Over his academic journey, Dr. Patel has consistently demonstrated academic excellence, evident in his comprehensive research output and accolades for innovation.

🏢Work Experience:

Dr. Paresh N. Patel has an illustrious career spanning academia and research. He has served as an I/c Director at Tarsadia Institute of Chemical Science since 2019 and was promoted to Associate Professor in 2024. Previously, he was an Assistant Professor (2016–2024) at Uka Tarsadia University and a Postdoctoral Fellow at IIT Madras (2013–2016), contributing to teaching and research in organic chemistry. He has also worked as a Fellow at NIF-Ahmedabad and an SRF at Sardar Patel University. His roles have encompassed teaching spectroscopy, nanotechnology, and stereochemistry, as well as guiding MSc, PhD, and Postdoctoral scholars. Dr. Patel’s leadership in organizing scientific events and workshops reflects his dedication to fostering innovation and skill development in chemical sciences.

🏅Awards: 

Dr. Paresh N. Patel has earned numerous accolades for his contributions to chemical research. He was awarded the prestigious DST Inspire Grant (₹24 lakh) and several significant project grants, including ₹30 lakh from GUJCOST and ₹32 lakh from GSBTM. He also received an International Travel Grant from DBT to present his research in the USA and was a recipient of a ₹10 lakh ICSR-IIT Madras project fund. His excellence in academia has been recognized through various seed grants from Uka Tarsadia University and industrial-funded research projects. Additionally, his proposals under DST-SYST and DST-TDP are under consideration, with a substantial ₹3 crore DST-FIST project in preparation. These accolades highlight Dr. Patel’s commitment to advancing scientific knowledge and fostering impactful collaborations.

🔬Research Focus:

Dr. Paresh N. Patel’s research centers on innovative applications of organic chemistry and nanotechnology. His projects include developing nano-scale organic biosensors (DST-SERB) and synthesizing gold nanoparticles from renewable resources for organic synthesis (GSBTM). He also explores asymmetric synthesis using biocatalysts and collaborates with industry to develop biotechnology for hydrogen and ethanol production. His research portfolio includes several high-value grants, such as DST Inspire, GUJCOST, and GSBTM. Dr. Patel’s interdisciplinary approach integrates materials science, biotechnology, and organic chemistry, aiming to address environmental and industrial challenges. His work not only advances theoretical understanding but also offers practical solutions in chemical and biosensor technology.

Publication Top Notes:

Title: Study of lawsone and its modified disperse dyes derived by triple cascade reaction: dyeing performance on nylon and polyester fabrics
Authors: Patel, N.C., Desai, D.H., Patel, P.N.
Year: 2024
Citations: 2

Title: Selective detection of azelnidipine in pharmaceuticals via carbon dot mediated spectrofluorimetric method: A green approach
Authors: Lodha, S.R., Gore, A.H., Merchant, J.G., Shah, S.A., Shah, D.R.
Year: 2024
Citations: 1

Title: Benzothiophene based semi-bis-chalcone as a photo-luminescent chemosensor with real-time hydrazine sensing and DFT studies
Authors: Oza, N.H., Kasundra, D., Deshmukh, A.G., Boddula, R., Patel, P.N.
Year: 2024
Citations: 0

Title: A lawsone based novel disperse dyes with DHPMs scaffold: dyeing studies on nylon and polyester fabric
Authors: Patel, N.C., Talati, K.S., Patel, P.N.
Year: 2024
Citations: 0

Title: Surface functionalized graphene oxide integrated 9,9-diethyl-9H-fluoren-2-amine monohybrid nanostructure: Synthesis, physicochemical, thermal and theoretical approach towards optoelectronics
Authors: Borane, N., Boddula, R., Odedara, N., Jirimali, H., Patel, P.N.
Year: 2024
Citations: 1

Title: Fungus reinforced sustainable gold nanoparticles: An efficient heterogeneous catalyst for reduction of nitro aliphatic, aromatic and heterocyclic scaffolds
Authors: Deshmukh, A.G., Rathod, H.B., Patel, P.N.
Year: 2023
Citations: 1

Title: Green and sustainable bio-synthesis of gold nanoparticles using Aspergillus Trinidadensis VM ST01: Heterogeneous catalyst for nitro reduction in water
Authors: Deshmukh, A.G., Mistry, V., Sharma, A., Patel, P.N.
Year: 2023
Citations: 3

Title: Design and synthesis of chalcone mediated novel pyrazoline scaffolds: Discovery of benzothiophene comprising antimicrobial inhibitors
Authors: Tandel, S.N., Kasundra, D.V., Patel, P.N.
Year: 2023
Citations: 2

Title: Studies of novel benzofuran based chalcone scaffolds: A dual spectroscopic approach as selective hydrazine sensor
Authors: Tandel, S.N., Deshmukh, A.G., Rana, B.U., Patel, P.N.
Year: 2023
Citations: 4

Title: Novel chalcone scaffolds of benzothiophene as an efficient real-time hydrazine sensor: Synthesis and single crystal XRD studies
Authors: Tandel, S.N., Mistry, P., Patel, P.N.
Year: 2023
Citations: 4

 

 

 

Evgeny Tretyakov | Organic Chemistry | Best Researcher Award

Prof Dr. Evgeny Tretyakov| Organic Chemistry | Best Researcher Award

Professor at N. D. Zelinsky Institute of Organic Chemistry, Russia

Prof. Evgeny Tretyakov is a distinguished chemist specializing in organic chemistry and molecular magnetism. Born on March 26, 1968, in Novosibirsk, Russia, he has dedicated his career to advancing the fields of organic radicals, high-spin molecules, and chemical ecology. His contributions to these areas are supported by his extensive research, numerous publications, and leadership roles in both academic and ecological initiatives.

Author Metrics

Scopus Profile

ORCID Profile

Prof. Tretyakov has achieved significant recognition in the scientific community. With a total of 3,454 citations across 1,896 documents and an h-index of 29, his research has made a considerable impact in the fields of organic chemistry and molecular magnetism. His high citation count and h-index reflect the influence and relevance of his work in these disciplines.

Education

Prof. Tretyakov’s educational background includes a Master’s Degree in Organic Chemistry from Novosibirsk State University (June 1992). He furthered his studies with a PhD from the Institute of Chemical Kinetics and Combustion, Novosibirsk, in November 1997. His academic journey continued with a Doctor of Science degree in 2009, followed by a professorship at the Institute of Organic Chemistry, Moscow, in July 2009. This solid educational foundation has been crucial in shaping his expertise and research career.

Research Focus

Prof. Tretyakov’s research focuses on organic chemistry and molecular magnetism. His work includes the synthesis of organic radicals and polyradicals, the design of high-spin organic systems, and the creation of magnetically active heterospin complexes. Additionally, he investigates the synthesis of fluorinated heterocycles and quinones. His contributions to chemical ecology include studying persistent organic pollutants and participating in international environmental programs such as the Stockholm Convention and the Arctic Contaminants Action Program.

Professional Journey

Prof. Tretyakov’s professional journey includes key positions in various prestigious institutions. He currently serves as the Deputy Director and Head of the Laboratory of Heterocyclic Compounds at the N. D. Zelinsky Institute of Organic Chemistry. His previous roles include Deputy Director at the Novosibirsk Institute of Organic Chemistry and Head of the Laboratory of Studying Nucleophilic and Radical Ion Reactions. His experience also includes visiting professorships at Max Planck Institute for Polymer Research and Osaka City University, reflecting his international collaboration and influence.

Honors & Awards

Prof. Tretyakov has been recognized with several prestigious awards and honors. These include the State Prize for Young Scientists, awards from the International Science and Education Development Foundation, and the Lavrentiev’s Award of SB RAS. He has also received accolades from the Russian Science Support Foundation and the Presidium SB RAS. These awards highlight his exceptional contributions to scientific research and his leadership in advancing his field.

Publications Noted & Contributions

Prof. Tretyakov has authored and co-authored over 250 scientific publications. Some notable works include studies on the role of paramagnetic ligands in magneto-structural anomalies, light-induced magnetostructural anomalies, and photoswitching in molecular magnets. His research has been published in leading journals such as Inorganic Chemistry, Journal of the American Chemical Society, and Angewandte Chemie, showcasing his significant contributions to the scientific literature.

Synthesis and Photoinduced Behavior of DPP-Anchored Nitronyl Nitroxides: A Multifaceted Approach

  • Journal: RSC Advances
  • Publication Date: 2024
  • DOI: 10.1039/D4RA00916A
  • Contributors: Evgeny Tretyakov, Dmitry Gorbunov, Nina Gritsan, Ashok Keerthi, Martin Baumgarten, Dieter Schollmeyer, Mikhail Ivanov, Anna Sergeeva, Matvey Fedin
  • Summary: This paper explores the synthesis and photoinduced behavior of diphenylphosphine (DPP)-anchored nitronyl nitroxides. The study presents a multifaceted approach to understanding how these compounds behave under light exposure, revealing insights into their photochemical properties and potential applications.

Polyfluorophenyl-Substituted Blatter Radicals: Synthesis and Structure–Property Correlations

  • Journal: Crystal Growth & Design
  • Publication Date: July 3, 2024
  • DOI: 10.1021/acs.cgd.4c00537
  • Contributors: Dmitry Gulyaev, Andrey Serykh, Dmitry Gorbunov, Nina Gritsan, Anna Akyeva, Mikhail Syroeshkin, Galina Romanenko, Evgeny Tretyakov
  • Summary: This article focuses on the synthesis of polyfluorophenyl-substituted Blatter radicals and examines the structure–property relationships of these compounds. The study provides detailed correlations between the molecular structure of the radicals and their physical properties, contributing to the understanding of their behavior and potential uses.

Halogen Bonding as a Supramolecular Modulator of Crystal Packing and Exchange Interactions in Nitronyl Nitroxides

  • Journal: Crystal Growth & Design
  • Publication Date: March 6, 2024
  • DOI: 10.1021/acs.cgd.3c01442
  • Contributors: Pavel V. Petunin, Evgeny V. Tretyakov, Matvey K. Shurikov, Daria E. Votkina, Galina V. Romanenko, Alexey A. Dmitriev, Nina P. Gritsan, Daniil M. Ivanov, Rosa M. Gomila, Antonio Frontera et al.
  • Summary: This research investigates how halogen bonding can modulate crystal packing and exchange interactions in nitronyl nitroxides. The study highlights the role of halogen bonds in influencing the supramolecular organization and magnetic properties of these materials, offering new perspectives on their structural and functional modulation.

A Nitronyl Nitroxide‐Substituted Benzotriazinyl Tetraradical**

  • Journal: Chemistry – A European Journal
  • Publication Date: February 7, 2024
  • DOI: 10.1002/chem.202303456
  • Contributors: Evgeny V. Tretyakov, Igor A. Zayakin, Alexey A. Dmitriev, Matvey V. Fedin, Galina V. Romanenko, Artem S. Bogomyakov, Anna Ya. Akyeva, Mikhail A. Syroeshkin, Naoki Yoshioka, Nina P. Gritsan
  • Summary: This paper reports on the synthesis and properties of a tetraradical compound featuring a nitronyl nitroxide-substituted benzotriazinyl core. The study discusses the electronic structure, magnetic properties, and potential applications of this novel tetraradical, providing insights into its unique behavior and characteristics.

Self-Assembly of Iodoacetylenyl-Substituted Nitronyl Nitroxides via Halogen Bonding

  • Journal: CrystEngComm
  • Publication Date: 2023
  • DOI: 10.1039/D3CE00735A
  • Contributors: Matvey K. Shurikov, Evgeny V. Tretyakov, Pavel V. Petunin, Darya E. Votkina, Galina V. Romanenko, Artem S. Bogomyakov, Sergi Burguera, Antonio Frontera, Vadim Yu. Kukushkin, Pavel S. Postnikov
  • Summary: This article explores the self-assembly of iodoacetylenyl-substituted nitronyl nitroxides through halogen bonding. It presents a detailed analysis of how these interactions influence the formation and organization of molecular assemblies, shedding light on the role of halogen bonding in supramolecular chemistry.

Research Timeline

Prof. Tretyakov’s research timeline spans several decades, with significant contributions starting from his early work in the Institute of Chemical Kinetics and Combustion to his current roles at the N. D. Zelinsky Institute of Organic Chemistry. His research projects have been supported by various grants and fellowships, including those from the Russian Foundation for Basic Research and the Centre National de la Recherche Scientifique. His ongoing research projects focus on areas such as molecular magnets and graphene nanostructures.

Collaborations and Projects

Throughout his career, Prof. Tretyakov has collaborated with leading scientists and institutions worldwide. His projects include the development of switchable molecular magnets, spin-labeled derivatives, and functionalized graphene nanostructures. These projects are supported by various international and national funding bodies, reflecting his strong network and collaborative approach in advancing chemical research.

Strengths of the Best Researcher Award

High Citation Impact: Prof. Tretyakov’s impressive citation metrics (3,454 citations and an h-index of 29) highlight the significant influence and broad recognition of his work in organic chemistry and molecular magnetism.

Diverse Research Focus: His research spans multiple important areas including organic radicals, high-spin molecules, chemical ecology, and molecular magnetism. This diversity showcases his ability to address complex scientific challenges from various perspectives.

Prestigious Publications: Prof. Tretyakov has published extensively in high-impact journals like Inorganic Chemistry, Journal of the American Chemical Society, and Angewandte Chemie. His work on topics such as photoinduced behavior and halogen bonding underscores his contributions to advancing knowledge in his fields.

International Collaboration: His collaborations with esteemed institutions and scientists worldwide (e.g., Max Planck Institute, Osaka City University) reflect his global recognition and the international relevance of his research.

Significant Awards and Honors: The recognition Prof. Tretyakov has received, including the State Prize for Young Scientists and the Lavrentiev’s Award, highlights his outstanding contributions and leadership in scientific research and ecological initiatives.

Areas for Improvement

Broadened Outreach: Although Prof. Tretyakov has made significant contributions to scientific research, increasing outreach through public engagement and science communication could further enhance the visibility and impact of his work outside academic circles.

Interdisciplinary Integration: While his work is diverse, there could be further opportunities to integrate findings from his research on chemical ecology with his studies in molecular magnetism, potentially leading to novel interdisciplinary applications.

Expanded Research Funding: Diversifying the sources and types of funding for his research could provide additional resources and support for exploring new and innovative areas within his field.

Increased Focus on Emerging Trends: Staying ahead of emerging trends in organic chemistry and molecular magnetism, such as advancements in computational methods or new materials, could help maintain his research’s cutting-edge status.

Mentorship and Training: Enhancing efforts in mentoring young scientists and fostering new talent in the field could ensure the continued growth and evolution of research in his areas of expertise.

Conclusion

Prof. Evgeny Tretyakov’s receipt of the Best Researcher Award is a testament to his exceptional contributions to organic chemistry and molecular magnetism. His extensive research, significant publication record, high citation impact, and international collaborations underscore his prominent role in advancing scientific knowledge. While there are areas for potential improvement, such as increasing public outreach and integrating interdisciplinary approaches, his achievements reflect a highly impactful and influential career. Continued focus on emerging trends and mentorship will further enhance his contributions and sustain his position at the forefront of scientific research.