Dr. Abdul Abdul | Nanotechnology | Best Researcher Award

Dr. Abdul Abdul | Nanotechnology | Best Researcher Award

Dr. Abdul Abdul , Nanotechnology , Associate Prof at Quanzhou University of Information Engineering, China

Dr. M. Abdul is an experimental physicist specializing in quantum many-body systems using ultracold atoms and quantum gases. He earned his Ph.D. from the University of Science and Technology of China, focusing on Boson Sampling schemes in optical lattices. Dr. Abdul has worked as an Assistant Professor at Sichuan University and is currently a full-time researcher at the University of Electronic Science and Technology of China. His research spans quantum optics, nonlinear optics, ultracold quantum gases, and high-resolution imaging. Dr. Abdul is highly skilled in developing ultrahigh vacuum systems, homemade lasers, and advanced imaging setups. With a resilient, positive, and hardworking personality, he has contributed to multiple research projects, applied for two patents, and published extensively in top journals. Fluent in English and beginner-level Chinese, Dr. Abdul embodies a cooperative spirit in scientific innovation and collaboration.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. M. Abdul is a dynamic and accomplished experimental physicist with a strong academic and research background in quantum optics, ultracold atomic systems, quantum simulation, and nonlinear optics. His research interests lie at the cutting edge of modern quantum physics, particularly in Boson sampling, high-resolution optical lattices, and superlattice-based quantum simulations. His career reflects a consistent and impactful contribution to both theoretical modeling and experimental implementation in advanced photonics and quantum technologies. Dr. M. Abdul is a highly deserving candidate for the “Best Researcher Award”. His research profile is marked by academic rigor, technical innovation, and interdisciplinary reach. With an impressive record of publications, international collaborations, and pioneering work in quantum systems and optics, he stands out as a leader among early- to mid-career researchers. His contributions not only advance fundamental science but also open new avenues for applications in quantum technologies and material science.

🎓Education:

Dr. M. Abdul pursued his Ph.D. in Physics at the University of Science and Technology of China (2014–2018), focusing on Boson Sampling with ultracold atoms. He completed his M.Phil. in Electronics from Quaid-I-Azam University Islamabad (2009–2011), achieving top national ranking, and earned an M.Sc. in Physics specializing in Electronics from Bahauddin Zakariya University, Multan (2006–2008). His undergraduate B.Sc. degree in Physics and Mathematics was also obtained from Bahauddin Zakariya University (2003–2006). Currently, he is serving as a full-time researcher at the University of Electronic Science and Technology of China (2022–2025). His academic journey reflects a consistent focus on quantum physics, electronic systems, and ultracold atomic research. He has also undertaken specialized training in laser systems, optical lattices, and computational physics tools, equipping him with deep experimental and theoretical proficiencies in modern quantum technologies.

🏢Work Experience:

Dr. M. Abdul has held several prestigious academic and teaching positions. From December 2018 to March 2022, he served as an Assistant Professor at Sichuan University, College of Physics, where he worked on optical lattices and ultracold atoms. Since May 2022, he has been a full-time researcher at the University of Electronic Science and Technology of China. Earlier in his career, he taught Physics and Mathematics at Down High School, Punjab Group of Colleges, and St. Mary College in Rawalpindi, developing a strong foundation in educational leadership and student mentorship. He also contributed to various national-level research projects in Pakistan, including studies on nonlinear atomic dynamics and nano-devices. His diverse professional experience combines experimental physics research, teaching, and development of advanced laboratory setups like vacuum systems, lasers, and imaging systems, establishing him as a multifaceted expert in quantum technologies.

🏅Awards: 

Dr. M. Abdul has achieved significant recognition throughout his academic career. He secured the first rank in his M.Phil. program at Quaid-I-Azam University, Islamabad. During his Ph.D. tenure, he contributed to several funded national and international research projects, such as those supported by the National Higher Education Commission of Pakistan and the National Science Foundation of China (NSFC). He has applied for two patents related to laser and optical technologies. His research presentations at major international conferences, including QCMC 2014 (China) and CHAOS2018, reflect his growing influence in quantum physics and nonlinear dynamics communities. Invitations to submit in top-tier journals such as Applied Physics Reviews and contributions to organizing international conferences on nanoscience further mark his career. His awards and project leadership roles highlight his excellence, innovation, and dedication to advancing the field of quantum optics and ultracold atom systems.

🔬Research Focus:

Dr. M. Abdul’s research primarily centers on quantum simulation, quantum optics, ultracold quantum gases, and many-body quantum systems. His doctoral work explored Boson Sampling schemes using ultracold atoms in optical lattices. He has since expanded his expertise into high-resolution imaging using superlattices and nonlinear optics with a focus on cavity-based laser systems. His work involves developing ultrahigh vacuum systems, laser stabilization circuits, and DMD-based imaging technologies. He is also engaged in first-principles studies of optical, electronic, and thermoelectric properties of novel perovskite materials. Dr. Abdul’s projects aim to realize quantum metamaterials and quantum memory devices, critical for future quantum technologies. His current focus includes creating spatially entangled bosonic systems, manipulating surface plasmon polaritons, and engineering ultracold atoms for Hong-Ou-Mandel interference experiments. His interdisciplinary approach bridges theoretical modeling with advanced experimental setups, contributing to the next-generation quantum simulation platforms.

Publication Top Notes:

1. Synergistic Improvement of OER/HER Electrocatalytic Performance of Cu₂Te via the Introduction of Zr for Water Electrolysis

2. Facile Synthesis of Co₃Te₄–Fe₃C for Efficient Overall Water-Splitting in an Alkaline Medium

3. Manipulation of Surface Plasmon Polariton Fields Excitation at Quantum-Size Slit in a Dielectric and Graphene Interface

4. Exploring the Properties of Zr₂CO₂/GaS van der Waals Heterostructures for Optoelectronic Applications

5. Effects of Thermal Fluctuation When an Optical Cavity Possesses Neutral Atoms and a Two-Mode Laser System

6. Synchronized Attractors and Phase Entrained with Cavity Loss of the Coupled Laser’s Map

 

 

Mrs. Amna. Bibi | Nanotechnology | Young Scientist Award

Mrs. Amna. Bibi | Nanotechnology | Young Scientist Award

Mrs. Amna. Bibi , Higher Education Department KPK , Pakistan

Amna Bibi is a dedicated Chemistry Lecturer at the Higher Education Department in KPK, Pakistan. With a strong academic background, she has distinguished herself as a passionate educator and researcher. Amna has earned her M.Phil. in Chemistry (Distinction) from the University of Science & Technology Bannu, specializing in Analytical Chemistry and Nanomaterials. Her research focuses on innovative sensing systems and nanomaterials. Amna has made significant contributions to the academic community through her involvement in teaching, research, and organizing scientific workshops. Along with her academic roles, she has demonstrated leadership in mentoring students, particularly in research and lab activities. Throughout her career, Amna has been recognized for her exceptional work, receiving multiple awards for her academic achievements and research.

Professional Profile:

Orcid  

Summary of Suitability for Award:

Amna Bibi’s academic achievements, groundbreaking research, leadership in academia, and commitment to scientific advancement make her an ideal candidate for the “Young Scientist Award”. Her work shows significant promise for continued contributions to the field of chemistry and its applications in environmental sustainability. Amna Bibi has consistently demonstrated academic excellence throughout her educational career, having earned distinctions at every level, including gold medals in her MSc and MPhil in Chemistry. Her research in the areas of analytical chemistry, nanomaterials, and sensing systems is cutting-edge, with publications in high-impact journals such as the Journal of Molecular Liquid and Chemical Engineering Journal. Her research has contributed to eco-friendly detection methods, which are crucial for environmental sustainability.

🎓Education:

Amna Bibi completed her M.Phil. in Chemistry with Distinction (CGPA 4.0/4.0) at the University of Science & Technology Bannu (2020-2023), specializing in Analytical Chemistry, focusing on Nanomaterials and Sensing Systems. She also earned her MSc in Analytical Chemistry (Distinction, 2418/2700) from the same university (2013-2016), where her research delved into nanomaterials and sensing systems. Her undergraduate degree, a BSc in Physical Sciences (502/550), was completed at the University of Science & Technology Bannu (2011-2013), with a major in Chemistry, Botany, and Zoology. Additionally, Amna completed her B.Ed. (2014-2016) and M.Ed. (2016-2018) from Allama Iqbal Open University, Islamabad. Her strong academic foundation in chemistry and education equips her with both the technical and pedagogical skills needed to contribute effectively to the academic and scientific communities.

🏢Work Experience:

Amna Bibi is currently working as a Chemistry Lecturer at the Higher Education Department KPK, where she has been employed since 2017. In this role, she utilizes diverse teaching methods, including lectures, presentations, and hands-on lab demonstrations, to enhance student understanding. Amna also works as a part-time Research Assistant at the University of Science & Technology Bannu since January 2022, where she prepares and delivers lectures, supervises lab activities, and assists students in writing research papers. Previously, she served as a Chemistry Teacher at the International Islamic University Islamabad Bannu Branch (2016-2017), creating a dynamic learning environment. Throughout her career, Amna has demonstrated a strong commitment to student learning, both in classroom settings and in research-oriented environments, continuously applying her expertise in analytical chemistry.

🏅Awards: 

Amna Bibi has earned multiple accolades throughout her academic career, reflecting her commitment to excellence. She received “Distinction” and first position in her M.Phil. (2023) and MSc (2016) studies at the University of Science & Technology Bannu. Amna was awarded the prestigious Gold Medal for achieving the highest marks in her MSc program. She also earned a Gold Medal in her BSc program (2013), further showcasing her academic prowess. In recognition of her excellence, Amna received a Need-Based Scholarship during her MSc (2015) and a Laptop under the PM’s National Laptop Scheme (2015). Additionally, she was honored with the “Best Student Award” from the University of Science & Technology Bannu in 2016. These awards highlight Amna’s consistent academic excellence and her passion for her field.

🔬Research Focus:

Amna Bibi’s research is centered on the development of nanomaterials and their applications in sensing systems. Her work explores ecofriendly and highly selective methods for detecting various ions using nanotechnology. In particular, she focuses on synthesizing silver nanoparticles and integrating them with plant extracts for efficient sensing of metal ions. Her research on electrochemical sensors aims to improve detection techniques for environmental and biological monitoring. Amna’s contributions include the application of density functional theory (DFT) in molecular analysis and the development of nanoscale probes for selective detection of hazardous substances. Her ongoing work addresses both fundamental chemistry and practical applications in environmental science, with a strong emphasis on sustainability and innovation in material chemistry.

Publication Top Notes:

  • Kinetics of silver ion encapsulation as nanoparticles using Vaccinium oxycoccos plant extract for the efficient sensing of Cr(iii) ions and its biological assessment
  • Highly selective and ecofriendly colorimetric method for the detection of iodide using green tea synthesized silver nanoparticles

 

 

 

 

 

Shripad Patil | Material chemistry | Young Scientist Award

Dr. Shripad Patil | Material chemistry | Young Scientist Award 

 Doctorate at Aragen Life Science, Hyderabad, India

Dr. Shripad Mukundrao Patil is an accomplished scientist specializing in Organic Chemistry, currently serving as an Assistant Professor at Rayat Shikshan Sanstha’s Dada Patil Mahavidyalaya in Karjat, Maharashtra, India. With a Ph.D. from Lovely Professional University, Punjab, his research focuses on the synthesis and application of magnetically recyclable silica-coated nanoparticles in organic transformations. His career reflects a commitment to academic excellence and innovation in green chemistry methodologies, leveraging his expertise to advance sustainable practices in chemical synthesis.

Author Metrics

ORCID Profile

Google Scholar Profile

Dr. Patil has established a significant scholarly presence with 18 research papers published in prestigious journals indexed in Scopus and Web of Science. His publications have garnered a total of 156 citations, underscoring his impact in the field of Organic Chemistry. His work is characterized by its pioneering use of magnetically recyclable nanocatalysts, contributing to advancements in catalysis and environmental sustainability within the pharmaceutical and chemical industries.

Education

Dr. Patil’s academic journey includes a Ph.D. in Organic Chemistry from Lovely Professional University, Punjab, awarded in 2023. Prior to this, he completed his M.Sc. and B.Sc. in Organic Chemistry at Dada Patil College, Karjat, Pune. His educational background has equipped him with a solid foundation in theoretical and practical aspects of chemistry, essential for his subsequent research endeavors and teaching career.

Research Focus

Dr. Patil’s research is centered on the development and application of magnetically recyclable silica-coated nanoparticles as catalysts in organic transformations. His work aims to enhance the efficiency and sustainability of chemical processes by minimizing environmental impact and optimizing resource utilization. Through innovative synthesis methods and rigorous characterization techniques, he contributes to the advancement of green chemistry principles and their practical implementation in industrial settings.

Professional Journey

Dr. Patil’s professional journey encompasses diverse roles including Assistant Professor at Rayat Shikshan Sanstha’s Dada Patil Mahavidyalaya, Karjat. He has effectively taught a range of chemistry courses, mentored students in research, and actively participated in academic conferences and workshops globally. His commitment to research excellence and academic leadership is evident in his contributions to curriculum development and his role as a mentor to aspiring chemists.

Honors & Awards

Throughout his career, Dr. Patil has received recognition for his contributions to Organic Chemistry, including a Ph.D. Award from Lovely Professional University, Punjab. He has also secured funding through grants such as the Seed Money Grant from Dada Patil Mahavidyalaya, Karjat, underscoring his ability to attract support for innovative research initiatives. His international patent for a novel process involving silica-coated nanoparticles further highlights his impact and recognition within the scientific community.

Publications Noted & Contributions

Dr. Patil’s research publications have made notable contributions to the field, particularly in the area of magnetically recoverable nanocatalysts and their applications in organic synthesis. His papers have been published in esteemed journals like Royal Society of Chemistry Advances and American Chemical Society Omega, showcasing his expertise in designing sustainable catalytic systems and their practical implications for industrial chemistry.

Malic Acid as a Green Catalyst for the N-Boc Protection under Solvent-free Condition

  • Journal: Letters in Organic Chemistry, 2024
  • DOI: 10.2174/0115701786278928231218113855
  • Contributors: Ashok Pise; Shripad M. Patil; Ajit P. Ingale
  • Summary: This article explores the use of malic acid as an eco-friendly catalyst for the N-Boc protection of compounds under solvent-free conditions, highlighting Dr. Patil’s commitment to sustainable catalytic processes.

Magnetite-supported montmorillonite (K10) (nanocat-Fe-Si-K10): an efficient green catalyst for multicomponent synthesis of amidoalkyl naphthol

  • Journal: RSC Advances, 2023
  • DOI: 10.1039/D3RA01522J
  • Contributors: Shripad M. Patil; Runjhun Tandon; Nitin Tandon; Iqubal Singh; Ashwini Bedre; Vilas Gade
  • Summary: This publication focuses on magnetite-supported montmorillonite as a catalyst for the multicomponent synthesis of amidoalkyl naphthol, illustrating Dr. Patil’s research in developing efficient heterogeneous catalysts.

Novel Silica-coated Magnetic Nanoparticles and Their Synthetic Applications

  • Journal: Iranian Journal of Catalysis, 2023
  • DOI: 10.30495/ijc.2023.1998671.2054
  • Contributors: Shripad Patil
  • Summary: Dr. Patil’s solo-authored article discusses novel silica-coated magnetic nanoparticles and their applications in synthetic chemistry, emphasizing advancements in nanotechnology for catalytic purposes.

[EMIm][BH3CN] Ionic Liquid as an Efficient Catalyst for the Microwave-Assisted One-Pot Synthesis of Triaryl Imidazole Derivatives

  • Journal: Letters in Organic Chemistry, 2023
  • DOI: 10.2174/1570178620666230510122033
  • Contributors: Rajesh K. Manjul; Suresh T. Gaikwad; Vilas B. Gade; Anjali S. Rajbhoj; Manohar K. Jopale; Shripad M. Patil; Dhananjay N. Gaikwad; Dayanand M. Suryavanshi; Santosh P. Goskulwad; Suvarna D. Shinde
  • Summary: This collaborative effort highlights the use of an ionic liquid as a catalyst for the microwave-assisted synthesis of triaryl imidazole derivatives, showcasing Dr. Patil’s role in interdisciplinary research on innovative catalytic systems.

Recent Progress in Fe3O4 Nanoparticles and Their Green Applications in Organic Transformations

  • Journal: Iranian Journal of Catalysis, 2023
  • DOI: 10.30495/ijc.2023.1991397.2024
  • Contributors: Shripad Patil; Ashwini Bedre
  • Summary: This review article co-authored by Dr. Patil explores recent advancements in the use of Fe3O4 nanoparticles for green applications in organic transformations, providing a comprehensive overview of sustainable nanocatalysts.

These publications underscore Dr. Shripad M. Patil’s research prowess and contributions to the development of sustainable and efficient catalytic systems, enhancing the field of Organic Chemistry with innovative solutions for chemical synthesis.

Research Timeline

Dr. Patil’s research timeline spans from his doctoral studies at Lovely Professional University, Punjab, culminating in significant projects such as the development of magnetically recyclable nanocatalysts. His continuous engagement in research activities underscores his dedication to advancing knowledge in Organic Chemistry, focusing on novel catalyst design and application-driven research for sustainable chemical processes.

Collaborations and Projects

Dr. Patil actively collaborates with international researchers, including partnerships with institutions like King Saud University, Riyadh, Saudi Arabia. These collaborations have enriched his research endeavors, fostering cross-cultural exchange and innovative approaches to nanocatalyst development. His projects emphasize collaborative efforts aimed at addressing global challenges in chemistry through interdisciplinary research and technological innovation.

These paragraphs provide a detailed breakdown of Dr. Shripad Mukundrao Patil’s academic background, research focus, professional journey, honors, publications, and collaborative efforts, reflecting his contributions and achievements in Organic Chemistry.