Assoc. Prof. Dr. Mustapha Hidouri | Biomaterials | Material Chemistry Award

Assoc. Prof. Dr. Mustapha Hidouri | Biomaterials | Material Chemistry Award

Assoc. Prof. Dr. Mustapha Hidouri | Biomaterials | Associate professor at Gabes University, Tunisia

Dr. Mustapha Hidouri is an Associate Professor at the Higher Institute of Applied Sciences and Technology, Gabes University, Tunisia. With a strong background in materials chemistry and physics, he has made significant contributions to biomaterials, environmental science, and energy research. He holds a Ph.D. in Chemistry of Solids and Liquids from the Faculty of Sciences, Monastir University, in collaboration with Limoges University, France. His expertise spans advanced materials synthesis, biomaterials for medical applications, and environmental sustainability. Dr. Hidouri has published extensively in international journals and has collaborated on various interdisciplinary research projects. His work in developing innovative biomaterials and energy-efficient materials has been widely recognized. He actively engages in academic mentorship and international collaborations, contributing to the global scientific community.

Professional Profile : 

Google Scholar

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Mustapha Hidouri is a highly suitable candidate for the “Material Chemistry Award”  due to his extensive research contributions in materials chemistry, biomaterials, and environmental applications. His expertise in solid-state chemistry, bioceramics, and hydroxyapatite-based materials demonstrates significant advancements in the field. His work in biomaterials for medical applications, sustainable energy, and environmental remediation aligns with the award’s focus on innovative materials research. Dr. Hidouri has made remarkable contributions to materials chemistry, particularly in the synthesis and characterization of advanced materials for biomedical, environmental, and industrial applications. His research in bioactive ceramics, nanomaterials, and polymer composites has led to novel developments in tissue engineering, water treatment, and renewable energy materials. His interdisciplinary approach integrates chemistry, physics, and engineering, making him a leader in developing high-performance and eco-friendly materials. His high-impact publications, international collaborations, and recognition in scientific forums further reinforce his eligibility for this prestigious award.

🎓Education:

Mustapha Hidouri obtained his Doctorate Diploma (Ph.D.) in Chemistry of Solids and Liquids (2000-2004) from the Faculty of Sciences, Monastir University, Tunisia, in collaboration with Limoges University, France. Before that, he earned his Higher Specified Study Diploma (equivalent to a Master’s degree) (1999-2000) in the same specialization from Monastir University, where he graduated with honors. His academic journey began with a Bachelor’s degree in Physical Sciences (1993-1998) from the Faculty of Sciences, Monastir University, Tunisia. Later, he obtained University Habilitation (2016-2018) from the Ministry of Higher Education and Scientific Research, Gabes University, Tunisia, further advancing his research and teaching credentials. His diverse academic background, international collaborations, and research expertise have significantly contributed to his specialization in materials chemistry, biomaterials, and environmental sciences.

🏢Work Experience:

Dr. Mustapha Hidouri has over two decades of academic and research experience. Since 2018, he has been serving as an Associate Professor at the Higher Institute of Applied Sciences and Technology, Gabes University. Prior to this, he worked as an Assistant Professor at the same institution (2005-2010, 2016-2018). From 2010 to 2016, he was an Assistant Professor at the Faculty of Sciences Yanbu, Taibah University, Saudi Arabia, where he contributed significantly to research and teaching. His career began as an Assistant Lecturer at multiple institutions, including Faculty of Sciences, Gabes University (2004-2005), Faculty of Sciences, Monastir University (2002-2003), and the Preparatory Institute for Engineering Studies, University of Monastir (2000-2002). His extensive experience spans teaching, mentoring students, conducting research in materials science, and collaborating on interdisciplinary projects related to biomaterials, environmental chemistry, and sustainable energy.

🏅Awards: 

Dr. Mustapha Hidouri has been recognized for his outstanding contributions to materials chemistry, biomaterials, and environmental sciences. His work has earned him multiple awards and distinctions for scientific excellence, high-impact publications, and contributions to sustainable technologies. He has received prestigious grants and funding for his research in bioceramics, biomaterials for medical applications, and environmental sustainability. His collaborative projects with international universities and research institutes have been acknowledged for their innovative approaches. Dr. Hidouri has also been invited as a keynote speaker at international conferences and has received best paper awards in reputed scientific journals. In addition, he has actively contributed to the advancement of materials science education, receiving accolades for his mentorship and academic leadership. His work in nanotechnology and bioactive materials has positioned him as a leader in the field, earning recognition from both academic and industrial sectors.

🔬Research Focus:

Dr. Mustapha Hidouri’s research focuses on materials chemistry, biomaterials, environmental sustainability, and energy applications. He specializes in the synthesis, characterization, and application of advanced materials, particularly bioceramics and hydroxyapatite-based materials for medical and dental applications. His work also explores the development of sustainable biomaterials for wound healing and tissue engineering. In environmental chemistry, he investigates wastewater treatment using phosphate-based adsorbents and advanced oxidation processes. Dr. Hidouri’s expertise extends to solid-state chemistry, mechanical properties of biomaterials, and the effects of gamma radiation on polymeric materials. His interdisciplinary research integrates chemistry, physics, and engineering, leading to innovative solutions in biomedical applications, renewable energy, and environmental remediation. With numerous publications in high-impact journals, his work significantly contributes to developing eco-friendly and high-performance materials for biomedical and industrial applications.

Publication Top Notes:

Thermal behavior of magnesium-containing fluorapatite

Authors: M. Hidouri, K. Bouzouita, F. Kooli, I. Khattech

Citations: 60

Year: 2003

Thermal behavior, sintering and mechanical characterization of multiple ion-substituted hydroxyapatite bioceramics

Authors: M. Hidouri, S. V. Dorozhkin, N. Albeladi

Citations: 49

Year: 2019

Structure and thermal stability of sodium and carbonate-co-substituted strontium hydroxyfluorapatites

Authors: M. Hidouri, S. V. Dorozhkin

Citations: 19

Year: 2018

Sintering and mechanical properties of magnesium-containing fluorapatite

Authors: M. Hidouri, K. Boughzala, J. P. Lecompte, K. Bouzouita

Citations: 13

Year: 2009

Sintering of potassium-doped hydroxy-fluorapatite bioceramics

Authors: J. B. Slimen, M. Hidouri, M. Ghouma, E. B. Salem, S. V. Dorozhkin

Citations: 9

Year: 2021

Insertion of cesium into strontium britholites

Authors: K. Boughzala, M. Hidouri, E. B. Salem, A. B. Chrifa, K. Bouzouita

Citations: 9

Year: 2007

Structural study of fluorapatites containing magnesium as a substitution

Authors: M. Hidouri, K. Bouzouita, A. Aissa, M. Debbabi

Citations: 9

Year: 2004

Sintering and ionic conduction of neodymium-bearing fluorobritholites

Authors: M. Hidouri

Citations: 5

Year: 2019

Lanthanum-neodymium-co-substituted calcium fluorobritholites

Authors: M. Hidouri, N. Albeladi

Citations: 5

Year: 2018

Influence of additions on the densification and microstructure of magnesium-substituted fluorapatite

Authors: M. Hidouri, K. Bouzouita, N. Fattah

Citations: 4

Year: 2005

Structural and electrical properties of lanthanide-doped oxybritholite materials

Authors: M. Bembli, R. Khiari, M. Hidouri, K. Boughzala

Citations: 3

Year: 2024

 

Shripad Patil | Material chemistry | Young Scientist Award

Dr. Shripad Patil | Material chemistry | Young Scientist Award 

 Doctorate at Aragen Life Science, Hyderabad, India

Dr. Shripad Mukundrao Patil is an accomplished scientist specializing in Organic Chemistry, currently serving as an Assistant Professor at Rayat Shikshan Sanstha’s Dada Patil Mahavidyalaya in Karjat, Maharashtra, India. With a Ph.D. from Lovely Professional University, Punjab, his research focuses on the synthesis and application of magnetically recyclable silica-coated nanoparticles in organic transformations. His career reflects a commitment to academic excellence and innovation in green chemistry methodologies, leveraging his expertise to advance sustainable practices in chemical synthesis.

Author Metrics

ORCID Profile

Google Scholar Profile

Dr. Patil has established a significant scholarly presence with 18 research papers published in prestigious journals indexed in Scopus and Web of Science. His publications have garnered a total of 156 citations, underscoring his impact in the field of Organic Chemistry. His work is characterized by its pioneering use of magnetically recyclable nanocatalysts, contributing to advancements in catalysis and environmental sustainability within the pharmaceutical and chemical industries.

Education

Dr. Patil’s academic journey includes a Ph.D. in Organic Chemistry from Lovely Professional University, Punjab, awarded in 2023. Prior to this, he completed his M.Sc. and B.Sc. in Organic Chemistry at Dada Patil College, Karjat, Pune. His educational background has equipped him with a solid foundation in theoretical and practical aspects of chemistry, essential for his subsequent research endeavors and teaching career.

Research Focus

Dr. Patil’s research is centered on the development and application of magnetically recyclable silica-coated nanoparticles as catalysts in organic transformations. His work aims to enhance the efficiency and sustainability of chemical processes by minimizing environmental impact and optimizing resource utilization. Through innovative synthesis methods and rigorous characterization techniques, he contributes to the advancement of green chemistry principles and their practical implementation in industrial settings.

Professional Journey

Dr. Patil’s professional journey encompasses diverse roles including Assistant Professor at Rayat Shikshan Sanstha’s Dada Patil Mahavidyalaya, Karjat. He has effectively taught a range of chemistry courses, mentored students in research, and actively participated in academic conferences and workshops globally. His commitment to research excellence and academic leadership is evident in his contributions to curriculum development and his role as a mentor to aspiring chemists.

Honors & Awards

Throughout his career, Dr. Patil has received recognition for his contributions to Organic Chemistry, including a Ph.D. Award from Lovely Professional University, Punjab. He has also secured funding through grants such as the Seed Money Grant from Dada Patil Mahavidyalaya, Karjat, underscoring his ability to attract support for innovative research initiatives. His international patent for a novel process involving silica-coated nanoparticles further highlights his impact and recognition within the scientific community.

Publications Noted & Contributions

Dr. Patil’s research publications have made notable contributions to the field, particularly in the area of magnetically recoverable nanocatalysts and their applications in organic synthesis. His papers have been published in esteemed journals like Royal Society of Chemistry Advances and American Chemical Society Omega, showcasing his expertise in designing sustainable catalytic systems and their practical implications for industrial chemistry.

Malic Acid as a Green Catalyst for the N-Boc Protection under Solvent-free Condition

  • Journal: Letters in Organic Chemistry, 2024
  • DOI: 10.2174/0115701786278928231218113855
  • Contributors: Ashok Pise; Shripad M. Patil; Ajit P. Ingale
  • Summary: This article explores the use of malic acid as an eco-friendly catalyst for the N-Boc protection of compounds under solvent-free conditions, highlighting Dr. Patil’s commitment to sustainable catalytic processes.

Magnetite-supported montmorillonite (K10) (nanocat-Fe-Si-K10): an efficient green catalyst for multicomponent synthesis of amidoalkyl naphthol

  • Journal: RSC Advances, 2023
  • DOI: 10.1039/D3RA01522J
  • Contributors: Shripad M. Patil; Runjhun Tandon; Nitin Tandon; Iqubal Singh; Ashwini Bedre; Vilas Gade
  • Summary: This publication focuses on magnetite-supported montmorillonite as a catalyst for the multicomponent synthesis of amidoalkyl naphthol, illustrating Dr. Patil’s research in developing efficient heterogeneous catalysts.

Novel Silica-coated Magnetic Nanoparticles and Their Synthetic Applications

  • Journal: Iranian Journal of Catalysis, 2023
  • DOI: 10.30495/ijc.2023.1998671.2054
  • Contributors: Shripad Patil
  • Summary: Dr. Patil’s solo-authored article discusses novel silica-coated magnetic nanoparticles and their applications in synthetic chemistry, emphasizing advancements in nanotechnology for catalytic purposes.

[EMIm][BH3CN] Ionic Liquid as an Efficient Catalyst for the Microwave-Assisted One-Pot Synthesis of Triaryl Imidazole Derivatives

  • Journal: Letters in Organic Chemistry, 2023
  • DOI: 10.2174/1570178620666230510122033
  • Contributors: Rajesh K. Manjul; Suresh T. Gaikwad; Vilas B. Gade; Anjali S. Rajbhoj; Manohar K. Jopale; Shripad M. Patil; Dhananjay N. Gaikwad; Dayanand M. Suryavanshi; Santosh P. Goskulwad; Suvarna D. Shinde
  • Summary: This collaborative effort highlights the use of an ionic liquid as a catalyst for the microwave-assisted synthesis of triaryl imidazole derivatives, showcasing Dr. Patil’s role in interdisciplinary research on innovative catalytic systems.

Recent Progress in Fe3O4 Nanoparticles and Their Green Applications in Organic Transformations

  • Journal: Iranian Journal of Catalysis, 2023
  • DOI: 10.30495/ijc.2023.1991397.2024
  • Contributors: Shripad Patil; Ashwini Bedre
  • Summary: This review article co-authored by Dr. Patil explores recent advancements in the use of Fe3O4 nanoparticles for green applications in organic transformations, providing a comprehensive overview of sustainable nanocatalysts.

These publications underscore Dr. Shripad M. Patil’s research prowess and contributions to the development of sustainable and efficient catalytic systems, enhancing the field of Organic Chemistry with innovative solutions for chemical synthesis.

Research Timeline

Dr. Patil’s research timeline spans from his doctoral studies at Lovely Professional University, Punjab, culminating in significant projects such as the development of magnetically recyclable nanocatalysts. His continuous engagement in research activities underscores his dedication to advancing knowledge in Organic Chemistry, focusing on novel catalyst design and application-driven research for sustainable chemical processes.

Collaborations and Projects

Dr. Patil actively collaborates with international researchers, including partnerships with institutions like King Saud University, Riyadh, Saudi Arabia. These collaborations have enriched his research endeavors, fostering cross-cultural exchange and innovative approaches to nanocatalyst development. His projects emphasize collaborative efforts aimed at addressing global challenges in chemistry through interdisciplinary research and technological innovation.

These paragraphs provide a detailed breakdown of Dr. Shripad Mukundrao Patil’s academic background, research focus, professional journey, honors, publications, and collaborative efforts, reflecting his contributions and achievements in Organic Chemistry.