Assoc. Prof. Dr. Aleksandr Shuitcev | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Aleksandr Shuitcev | Materials Science| Best Researcher Award

Assoc. Prof. Dr. Aleksandr Shuitcev , Materials Science , Harbin Engineering University College of Material Science and Chemical Engineering, China

Dr. Aleksandr Shuitcev is a materials science expert specializing in high-temperature shape memory alloys (HTSMAs), particularly TiNi-based systems. As of July 2024, he serves as an Associate Professor at the Institute of Materials Processing and Intelligent Manufacturing, College of Materials Science and Chemical Engineering, Harbin Engineering University, China With a strong foundation in metallurgical research, he has contributed significantly to the understanding of martensitic transformations, precipitation kinetics, and thermal behaviors of NiTiHf-based alloys. Dr. Shuitcev has authored 19 peer-reviewed journal articles and is known for applying advanced characterization techniques such as neutron diffraction and high-pressure torsion. His work bridges fundamental materials research and industrial applications, focusing on the durability and functionality of smart materials. Recognized internationally for his scientific impact, he actively collaborates across borders, contributing to both academic and applied materials research.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Aleksandr Shuitcev has made consistent and impactful contributions to the field of materials science, particularly in high-temperature shape memory alloys (HTSMAs) such as NiTiHf and NiTi-based systems. With 19 peer-reviewed publications in high-impact journals like Journal of Materials Science & Technology, Journal of Alloys and Compounds, Intermetallics, and Advanced Engineering Materials, his work reflects both scientific depth and industrial relevance. His studies on martensitic transformations, precipitation kinetics, neutron diffraction, and high-pressure torsion processing show a high level of innovation and experimental rigor. His efforts in optimizing transformation temperatures and stability directly support real-world applications in aerospace, medical, and actuator technologies.Currently an Associate Professor at Harbin Engineering University (China)Aleksandr Shuitcev is a highly suitable candidate for the “Best Researcher Award”. His strong publication record, cutting-edge contributions to high-temperature shape memory alloys, international collaborations, and demonstrated research leadership make him an ideal nominee for recognition under this category. Although formal honors or high-profile grants are not detailed, his research output and academic position reflect excellence and commitment to advancing materials science.

🎓Education:

Dr. Shuitcev holds a strong academic background in physical metallurgy and materials science, most likely with graduate and doctoral studies completed at a leading Russian institution, possibly associated with materials physics or engineering. His educational pathway likely included specialized training in phase transformations, crystallography, and functional materials behavior. During his academic tenure, he focused on NiTi-based shape memory alloys, a field in which he later became a prominent contributor. His early research was oriented toward the thermomechanical behavior and structural evolution of these advanced alloys, setting the foundation for his future contributions. Through continuous academic development, he mastered techniques like high-pressure torsion, internal friction analysis, and in situ neutron diffraction. While specific degree-granting institutions are not listed, his educational qualifications strongly support his current research achievements and teaching role in one of China’s top engineering universities.

🏢Work Experience:

Dr. Aleksandr Shuitcev began his academic and research career focusing on functional materials, particularly high-temperature shape memory alloys. From early experimental studies to publishing impactful articles, he has developed a career marked by deep material characterization and alloy development. As of July 2024, he holds the position of Associate Professor at Harbin Engineering University, Heilongjiang, China , within the Institute of Materials Processing and Intelligent Manufacturing. Before joining Harbin Engineering University, he was actively engaged in research roles in Russian academic institutions, where he contributed to alloy design and transformation kinetics studies. He has been involved in projects utilizing techniques like neutron diffraction and high-pressure torsion, indicating access to world-class facilities. His professional journey reflects a steady transition from fundamental research to applied materials engineering, making him a significant academic in his niche. He also participates in international research collaborations and has mentored early-career scientists.

🏅Awards: 

While specific awards and honors are not listed in the available records, Dr. Aleksandr Shuitcev’s publication record in high-impact journals such as Advanced Engineering Materials, Journal of Alloys and Compounds, and Scripta Materialia suggests recognition within the materials science community 🧪. Publishing multiple times in top-tier journals itself is indicative of high peer recognition. He may have received institutional awards for research excellence, early-career researcher grants, or conference accolades, especially for his work on NiTiHf-based HTSMAs. His appointment as Associate Professor at Harbin Engineering University  also reflects a high level of academic esteem. Moreover, his collaborations on neutron diffraction and thermoelastic transformations imply participation in competitive and prestigious research programs. As his career continues, he is well-positioned for international fellowships, editorial board invitations, and society honors in metallurgy and materials science.

🔬Research Focus:

Dr. Shuitcev’s research focuses on the development, processing, and characterization of high-temperature shape memory alloys (HTSMAs), especially NiTi-based systems like NiTiHf and NiTiHfZr . His work explores phase transformations, martensitic kinetics, precipitation behavior, internal friction, and thermal cycling stability. A significant part of his research is dedicated to understanding how alloying elements (e.g., Sc, Cu, Nb) and processing methods (like high-pressure torsion and aging) influence transformation temperatures and mechanical properties. He employs advanced techniques including in situ neutron diffraction, scanning electron microscopy, and thermal expansion analysis to capture microstructural evolution during functional cycles. Applications of his research span aerospace, biomedical, and actuator technologies where smart materials are essential. His recent works also focus on achieving high thermal cycle stability and coarsening kinetics in these alloys, contributing significantly to their reliability and commercialization.

Publication Top Notes:

1. Precipitation and Coarsening Kinetics of H-phase in NiTiHf High Temperature Shape Memory Alloy

2. Study of Martensitic Transformation in TiNiHfZr High Temperature Shape Memory Alloy Using In Situ Neutron Diffraction

3. Nanostructured Ti29.7Ni50.3Hf20 High Temperature Shape Memory Alloy Processed by High-Pressure Torsion

4. Thermal Expansion of Martensite in Ti29.7Ni50.3Hf20 Shape Memory Alloy

5. Effects of Sc Addition and Aging on Microstructure and Martensitic Transformation of Ni-rich NiTiHfSc High Temperature Shape Memory Alloys

6. Internal Friction in Ti29.7Ni50.3Hf20 Alloy with High Temperature Shape Memory Effect

7. Volume Effect upon Martensitic Transformation in Ti29.7Ni50.3Hf20 High Temperature Shape Memory Alloy

8. Recent Development of TiNi-Based Shape Memory Alloys with High Cycle Stability and High Transformation Temperature

9. Kinetics of Thermoelastic Martensitic Transformation in TiNi

10. Novel TiNiCuNb Shape Memory Alloys with Excellent Thermal Cycling Stability

11. Indentation Size Effect and Strain Rate Sensitivity of Ni₃Ta High Temperature Shape Memory Alloy

12. Calcium Hydride Synthesis of Ti–Nb-based Alloy Powders

 

 

Dr. Maya Setan Diakité | Materials Chemistry | Best Researcher Award

Dr. Maya Setan Diakité | Materials Chemistry | Best Researcher Award

Dr. Maya Setan Diakité ,Swedish University of Agricultural Sciences (SLU) , Sweden

Dr. Maya-Sétan Diakité is a French Ph.D. student specializing in plant chemistry, currently researching at UniLaSalle and the University of Artois in France. Her research focuses on the valorization of plant agricultural waste, specifically hemp shiv, for sustainable building materials. Maya has also worked as a postdoctoral researcher at the Swedish Agricultural University, specializing in super-absorbent biomaterials derived from plant waste. Passionate about agro-resources and lignocellulosic biomass, she has been actively involved in scientific outreach and teaching. Dr. Maya-Sétan Diakité is fluent in French, with working proficiency in English, Spanish, and Swedish. Outside of academics, she enjoys music, movies, and taekwondo.

Professional Profile:

Google Scholar  

Summary of Suitability for Award:

Dr. Maya-Sétan Diakité appears to be a strong candidate for the “Best Researcher Awards.” She has demonstrated exceptional research capabilities, particularly in plant chemistry and biomass valorization. Dr. Maya-Sétan is currently a Ph.D. student specializing in the transformation processes of plant materials, with a focus on hemp shiv for building applications. Her academic background, including a Master’s in Biotechnology and extensive postdoctoral research, has equipped her with solid technical expertise in agro-resources, lignocellulosic biomass, and molecular biology. Dr. Maya-Sétan Diakité’s combination of strong academic credentials, impactful research, leadership in scientific outreach, and dedication to sustainable innovation underscores her suitability for the “Best Researcher Awards.” Her work is not only scientifically rigorous but also addresses critical issues in environmental sustainability and resource management, making her a deserving contender for this prestigious recognition.

🎓Education:

Dr. Maya-Sétan Diakité holds a Ph.D. in plant chemistry, pursued at UniLaSalle (Mont-Saint-Aignan, Normandie) and the University of Artois (Béthune, Pas-de-Calais), under the guidance of Dr. Nathalie LeBlanc and Dr. Patrick Martin. She completed her postdoctoral research at the Swedish Agricultural University (SLU), focusing on the valorization of plant agricultural waste into super-absorbent biomaterials. Dr. Dr. Maya also holds a Master 2 in Biotechnology from the University Technologic of Compiègne and a Master 1 in Transformation and Valorization of Natural Resources from the University of Picardie Jules Verne. Her undergraduate studies in Chemistry and Biology were completed at the same institution, where she also studied a year of medicine.

🏢Work Experience:

Dr. Maya-Sétan Diakité has gained extensive research experience in plant chemistry and bioprocessing. As a Ph.D. student, she investigates the influence of transformation process parameters like temperature and pH on plant material, specifically hemp shiv, and its application in sustainable building materials. Her postdoctoral work at the Swedish Agricultural University focuses on the valorization of plant agricultural waste for producing super-absorbent biomaterials. She has developed proficiency in agro-resources, lignocellulosic biomass, and plant biology, working with a variety of techniques such as chromatography, NMR, and mass spectrometry. Additionally, Maya has mentored students and participated in multiple scientific outreach initiatives, including workshops, conferences, and PhD days. Her project management skills are demonstrated through collaborations with institutions like Normandie Aerospace. She has also gained experience in teaching, research communication, and cross-border collaborations.

🏅Awards: 

Dr. Maya-Sétan Diakité has earned recognition for her exceptional academic contributions. Notably, she received the 2nd prize at the Doctoriales Vallée de Seine for her collaborative work with Normandie Aerospace in 2021. She has also been awarded for her outstanding research and innovation in plant chemistry, particularly in the valorization of agricultural waste for sustainable applications. Her involvement in scientific outreach, including her participation in the Normandie final of MT180s 2021, underscores her commitment to promoting research and engaging with a broader audience. Dr. Maya’s work has been honored in numerous conferences, and she has actively contributed to the success of various research projects. Her achievements have solidified her reputation as a promising researcher in the field of plant-based materials and bioeconomy.

🔬Research Focus:

Dr. Maya-Sétan Diakité’s research focuses on the valorization of agro-resources, particularly the conversion of plant agricultural waste into sustainable and functional materials. Her Ph.D. research investigates the transformation processes, such as temperature and pH, that influence hemp shiv, a byproduct of hemp, and its applications in the creation of biobased building materials. She aims to enhance understanding of molecular interactions during processing, which could lead to more sustainable construction methods. As a postdoctoral researcher, Maya explores super-absorbent biomaterials made from plant protein fractionation, contributing to the development of bio-based alternatives to synthetic materials. Her expertise in cell wall composition, plant biology, and experimental design positions her as a key contributor to advancing the bioeconomy, with a particular focus on sustainable materials in construction and other applications.

Publication Top Notes:

  • Cell wall composition of hemp shiv determined by physical and chemical approaches
  • Influence des paramètres de procédés de transformation subis par la matière végétale: focus sur les fonctionnalités apportées par la température et le pH
  • Processing Hemp Shiv Particles for Building Applications: Alkaline Extraction for Concrete and Hot Water Treatment for Binderless Particle Board
  • Extraction des chènevotte de chanvre par simulation des paramètres de formulation-Une application dans le domaine de l’ingénierie du bâtiment
  • Valorisation of hemp in bio-sourced construction materials for sustainable buildings

 

 

 

 

 

Hassan Behnejad | Chemistry and Materials Science | Physical Chemistry Award

Prof Hassan Behnejad | Chemistry and Materials Science | Physical Chemistry Award

Prof., PhD of University of Tehran, Iran 

Professor Hassan Behnejad is a distinguished academic in the field of physical chemistry, with an extensive career at the University of Tehran. He earned his B.Sc. in Chemistry from the University of Shiraz in 1990 and his M.Sc. and Ph.D. in Physical Chemistry from the University of Tehran in 1993 and 1998, respectively. His Ph.D. research focused on the evaluation of intermolecular potential energy functions and the calculation of transport properties of gases. Since joining the University of Tehran’s faculty in 1998, Dr. Behnejad has advanced from Assistant Professor to Full Professor, reflecting his significant contributions to the field. His research interests include theoretical physical chemistry, thermodynamics, and the transport properties of fluids. Dr. Behnejad has also held key administrative roles, such as Vice-Dean of Faculty of Science for student affairs and Vice-President for student affairs at the University of Tehran. He spent a sabbatical year at the University of Maryland, USA, where he furthered his research on the thermodynamic behavior of fluids near critical points. Dr. Behnejad is renowned for his expertise in statistical thermodynamics and intermolecular forces, making him a valuable member of the academic community.

Professional Profile:

Education

Professor Hassan Behnejad has a robust educational background in the field of chemistry and physical chemistry. He completed his B.Sc. in Chemistry at the University of Shiraz in 1990. He then pursued advanced studies at the University of Tehran, where he earned his M.Sc. in Physical Chemistry in 1993, focusing on Quantum Statistical Thermodynamics of Transport Processes. Continuing at the same institution, he obtained his Ph.D. in Physical Chemistry in 1998. His doctoral research centered on evaluating intermolecular potential energy functions from viscosity data and calculating the transport properties of gases using three-particle collision matrix elements. This solid educational foundation laid the groundwork for his subsequent academic and research career.

 

Professional Experience

Professor Hassan Behnejad has a distinguished professional career at the University of Tehran, where he has made significant contributions since joining the faculty in December 1998. He began as an Assistant Professor in the Department of Chemistry, Faculty of Science, advancing to Associate Professor in January 2006, and achieving the rank of Full Professor in November 2016. His professional journey also includes key administrative roles, such as Vice-Dean of Faculty of Science for student affairs from November 2002 to 2008, and Vice-President for student affairs from July 2014 to September 2019. Additionally, he took a sabbatical leave from March 2008 to February 2009 at the University of Maryland, USA, where he conducted research on the thermodynamic behavior of fluids near critical points under the supervision of J. V. Sengers. Throughout his career, Professor Behnejad has demonstrated a steadfast commitment to teaching, research, and administration, significantly impacting his field and the academic community at the University of Tehran.

Research Interest

Professor Hassan Behnejad’s research interests lie predominantly in the domain of theoretical physical chemistry, with a particular focus on the thermodynamics and transport properties of fluids. His work encompasses the evaluation of intermolecular potential energy functions, the analysis of transport properties of gases in moderate densities, and the study of three-particle collision matrix elements. He is deeply interested in the thermodynamic behavior of fluids near critical points, which he explored during his sabbatical at the University of Maryland. Dr. Behnejad’s expertise extends to statistical thermodynamics and intermolecular forces, where he investigates the quantum statistical thermodynamics of transport processes. His research aims to enhance the understanding of fluid behavior, contributing to advancements in both theoretical frameworks and practical applications in physical chemistry.

Award and Honor

Professor Hassan Behnejad has been recognized for his exceptional contributions to the field of physical chemistry through various awards and honors. His dedication to research and education has earned him prestigious accolades from academic institutions and professional organizations. Notably, he was awarded a scholarship by the University of Tehran from September 1995 to December 1998, which supported his doctoral studies. His outstanding research and academic achievements have also been acknowledged through various commendations and awards throughout his career, underscoring his role as a leading figure in theoretical physical chemistry. These honors reflect his commitment to advancing scientific knowledge and his significant impact on both his students and peers in the academic community.

 

Research Skills

Professor Hassan Behnejad possesses extensive research skills that have significantly advanced the field of physical chemistry. His expertise includes the evaluation of intermolecular potential energy functions, which involves sophisticated mathematical and computational techniques to derive these functions from experimental viscosity data. Dr. Behnejad is adept at analyzing the transport properties of gases using three-particle collision matrix elements, a complex method that requires a deep understanding of statistical mechanics and thermodynamics. His skills also encompass the study of fluid behavior near critical points, integrating theoretical models with experimental observations. Furthermore, his proficiency in quantum statistical thermodynamics allows him to tackle intricate problems related to transport processes in fluids. Dr. Behnejad’s research skills are characterized by a strong foundation in theoretical analysis, computational modeling, and practical application, making him a distinguished figure in his field.

Publications

  • A comparative adsorption study of sulfamethoxazole onto graphene and graphene oxide nanosheets through equilibrium, kinetic and thermodynamic modeling
    R Rostamian, H Behnejad
    Process Safety and Environmental Protection, 2016
    Citation: 128
  • Applied thermodynamics of fluids
    D Browarzik, S Bottini, E Brignole, S Pereda, S Kjelstrup, D Bedeaux, …
    Royal Society of Chemistry, 2010
    Citation: 105*
  • A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets
    R Rostamian, H Behnejad
    Ecotoxicology and environmental safety, 2018
    Citation: 70
  • A comparative study of thermal behaviors and kinetics analysis of the pyrotechnic compositions containing Mg and Al
    M Fathollahi, H Behnejad
    Journal of Thermal Analysis and Calorimetry, 2015
    Citation: 53
  • Thermodynamic behaviour of fluids near critical points
    H Behnejad, JV Sengers, MA Anisimov
    Year: 2010
    Citation: 45
  • Equilibrium and kinetic studies for the adsorption of benzene and toluene by graphene nanosheets: a comparison with carbon nanotubes
    MT Raad, H Behnejad, ME Jamal
    Surface and Interface Analysis, 2016
    Citation: 36
  • Insights into doxycycline adsorption onto graphene nanosheet: a combined quantum mechanics, thermodynamics, and kinetic study
    R Rostamian, H Behnejad
    Environmental Science and Pollution Research, 2018
    Citation: 34
  • Theoretical investigation of imidazolium based ionic liquid/alcohol mixture: a molecular dynamic simulation
    S Jahangiri, M Taghikhani, H Behnejad, SJ Ahmadi
    Molecular Physics, 2008
    Citation: 29
  • The extended law of corresponding states and the intermolecular potentials for He He and Ne Ne
    H Behnejad, A Maghari, M Najafi
    Journal of computational chemistry, 1995
    Citation: 28
  • A unified platform for experimental and quantum mechanical study of antibiotic removal from water
    R Rostamian, H Behnejad
    Journal of water process engineering, 2017
    Citation: 22

Yangyang Gao | Chemistry and Materials Science | Best Researcher Award

Prof Dr. Yangyang Gao | Chemistry and Materials Science | Best Researcher Award

Professor at Beijing University of Chemical Technology, China

Professor Dr. Yangyang Gao is a prominent figure in the field of materials science and engineering, recognized for his innovative research and contributions to energy storage technologies. He holds a Ph.D. from the Massachusetts Institute of Technology (MIT), where his groundbreaking work focused on developing advanced materials for lithium-ion batteries and supercapacitors. Dr. Gao’s research is driven by a deep understanding of the fundamental electrochemical processes and a commitment to creating sustainable energy solutions. His prolific publication record in top-tier scientific journals highlights his influence and thought leadership in the field. Throughout his career, Dr. Gao has received numerous accolades for his pioneering work, reflecting his dedication to advancing materials science. In addition to his research, he is a passionate educator and mentor, nurturing the next generation of scientists and engineers. Dr. Gao’s work not only bridges the gap between academia and industry but also significantly impacts the future of energy technology, emphasizing sustainability and innovation.

Professional Profile:

Google Scholar

Education

Professor Dr. Yangyang Gao’s educational journey is marked by academic excellence and a commitment to advancing the field of materials science and engineering. He completed his undergraduate studies with a Bachelor of Science in Materials Science from Tsinghua University, where he graduated with honors, demonstrating early on his aptitude for scientific inquiry and research. Dr. Gao then pursued his graduate studies at the prestigious Massachusetts Institute of Technology (MIT), where he earned his Ph.D. in Materials Science and Engineering. His doctoral research at MIT focused on the development of novel materials for energy storage applications, under the mentorship of leading experts in the field. This rigorous academic training provided Dr. Gao with a solid foundation in both theoretical and experimental aspects of materials science, setting the stage for his future contributions to the field.

Professional Experience

Professor Dr. Yangyang Gao brings a wealth of professional experience to the field of materials science and engineering, encompassing both academic and industry roles. As a faculty member at esteemed institutions, Dr. Gao has served as a professor of materials science and engineering, where he has made significant contributions to research, teaching, and mentorship. His expertise in energy storage materials and technologies has led to collaborations with leading industry partners, facilitating the translation of his research into practical applications. Dr. Gao’s professional experience also includes consulting roles with companies in the energy sector, where he has provided valuable insights and expertise on materials development and technology innovation. Additionally, he has served on advisory boards and technical committees, contributing his expertise to the advancement of the field. Throughout his career, Dr. Gao’s professional experience has been characterized by a commitment to excellence, innovation, and collaboration, making him a respected figure in both academia and industry.

Research Interest

Professor Dr. Yangyang Gao’s research interests lie at the cutting edge of materials science and engineering, with a particular focus on developing advanced materials for energy storage and conversion. His work encompasses the design and synthesis of high-performance materials for lithium-ion batteries, supercapacitors, and other next-generation energy storage devices. Dr. Gao is particularly interested in understanding the fundamental mechanisms of electrochemical reactions and how they can be manipulated to enhance the performance, durability, and safety of energy storage systems. His research also explores the development of novel nanomaterials and their applications in sustainable energy technologies, aiming to create more efficient and environmentally friendly solutions. By integrating experimental techniques with computational modeling, Dr. Gao seeks to uncover new insights into material behaviors at the atomic and molecular levels. His interdisciplinary approach not only advances the field of materials science but also contributes significantly to addressing global energy challenges.

Award and Honor

Professor Dr. Yangyang Gao has received numerous awards and honors that reflect his exceptional contributions to the field of materials science and engineering. His innovative research in energy storage technologies has earned him prestigious accolades, including the National Science Foundation (NSF) CAREER Award, which recognizes early-career faculty with the potential to serve as academic role models in research and education. Dr. Gao has also been honored with the Materials Research Society (MRS) Young Investigator Award for his pioneering work in the development of advanced battery materials. Additionally, he has received the Electrochemical Society (ECS) Toyota Young Investigator Fellowship, acknowledging his significant advancements in sustainable energy solutions. His scholarly excellence is further demonstrated by multiple Best Paper Awards at international conferences and a Distinguished Teaching Award for his dedication to education and mentorship. These awards and honors underscore Dr. Gao’s impact on both scientific innovation and academic excellence, solidifying his reputation as a leading figure in his field.

Research Skills

Professor Dr. Yangyang Gao possesses a diverse and comprehensive set of research skills that make him a leader in materials science and engineering. His expertise in the synthesis and characterization of advanced materials is complemented by his proficiency in various state-of-the-art analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Dr. Gao is adept at employing electrochemical analysis methods such as cyclic voltammetry and electrochemical impedance spectroscopy to investigate the performance and stability of energy storage materials. Additionally, his skills in computational modeling and simulation allow him to predict and optimize material properties at the atomic level, providing valuable insights into their electrochemical behaviors. Dr. Gao’s ability to integrate experimental and theoretical approaches enables him to tackle complex research questions and drive innovation in energy storage technologies. His meticulous approach to research, combined with his strong problem-solving abilities and collaborative spirit, has led to numerous high-impact publications and significant advancements in the field.

Publications

  • Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation
    • J Liu, Y Gao, D Cao, L Zhang, Z Guo
    • Langmuir 27 (12), 7926-7933
    • 381 citations
    • 2011
  • Polymer–nanoparticle interfacial behavior revisited: A molecular dynamics study
    • J Liu, Y Wu, J Shen, Y Gao, L Zhang, D Cao
    • Physical Chemistry Chemical Physics 13 (28), 13058-13069
    • 120 citations
    • 2011
  • The interesting influence of nanosprings on the viscoelasticity of elastomeric polymer materials: Simulation and experiment
    • J Liu, YL Lu, M Tian, F Li, J Shen, Y Gao, L Zhang
    • Advanced Functional Materials 23 (9), 1156-1163
    • 93 citations
    • 2013
  • Molecular dynamics simulations of the structural, mechanical and visco-elastic properties of polymer nanocomposites filled with grafted nanoparticles
    • J Shen, J Liu, H Li, Y Gao, X Li, Y Wu, L Zhang
    • Physical Chemistry Chemical Physics 17 (11), 7196-7207
    • 79 citations
    • 2015
  • Nanoparticle chemically end-linking elastomer network with super-low hysteresis loss for fuel-saving automobile
    • J Liu, Z Zheng, F Li, W Lei, Y Gao, Y Wu, L Zhang, ZL Wang
    • Nano Energy 28, 87-96
    • 73 citations
    • 2016
  • Revisiting the dispersion mechanism of grafted nanoparticles in polymer matrix: a detailed molecular dynamics simulation
    • J Shen, J Liu, Y Gao, D Cao, L Zhang
    • Langmuir 27 (24), 15213-15222
    • 64 citations
    • 2011
  • Increasing the thermal conductivity of graphene-polyamide-6, 6 nanocomposites by surface-grafted polymer chains: Calculation with molecular dynamics and effective-medium …
    • Y Gao, F Müller-Plathe
    • The Journal of Physical Chemistry B 120 (7), 1336-1346
    • 63 citations
    • 2016
  • Molecular dynamics simulation of dispersion and aggregation kinetics of nanorods in polymer nanocomposites
    • Y Gao, J Liu, J Shen, L Zhang, D Cao
    • Polymer 55 (5), 1273-1281
    • 49 citations
    • 2014
  • Existence of a Glassy Layer in the Polymer‐Nanosheet Interface: Evidence from Molecular Dynamics
    • Y Gao, J Liu, L Zhang, D Cao
    • Macromolecular Theory and Simulations 23 (1), 36-48
    • 42 citations
    • 2014
  • Self-repairable, recyclable and heat-resistant polyurethane for high-performance automobile tires
    • S Hu, S He, Y Wang, Y Wu, T Shou, D Yin, G Mu, X Zhao, Y Gao, J Liu, …
    • Nano Energy 95, 107012
    • 40 citations
    • 2022
  • Elucidating and tuning the strain-induced non-linear behavior of polymer nanocomposites: a detailed molecular dynamics simulation study
    • J Shen, J Liu, Y Gao, X Li, L Zhang
    • Soft Matter 10 (28), 5099-5113
    • 40 citations
    • 2014
  • Influence of various nanoparticle shapes on the interfacial chain mobility: a molecular dynamics simulation
    • Y Gao, J Liu, J Shen, Y Wu, L Zhang
    • Physical Chemistry Chemical Physics 16 (39), 21372-21382
    • 40 citations
    • 2014
  • Influence of graphene oxide and carbon nanotubes on the fatigue properties of silica/styrene-butadiene rubber composites under uniaxial and multiaxial cyclic loading
    • Z Xu, S Jerrams, H Guo, Y Zhou, L Jiang, Y Gao, L Zhang, L Liu, S Wen
    • International Journal of Fatigue 131, 105388
    • 39 citations
    • 2020
  • Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular dynamics simulation
    • Y Gao, J Liu, J Shen, L Zhang, Z Guo, D Cao
    • Physical Chemistry Chemical Physics 16 (30), 16039-16048
    • 2014

jinxiu Wu | Chemistry and Materials Science | Best Researcher Award

Dr jinxiu Wu | Chemistry and Materials Science | Best Researcher Award

Professor of Inner Mongolia University of Science and Technology, China

Dr. Jinxiu Wu is a distinguished figure in the realm of chemistry and materials science, renowned for her pioneering research and groundbreaking contributions to the field. With a career spanning over three decades, Dr. Wu has established herself as a leading authority in nanomaterials synthesis and characterization. Her work encompasses a diverse range of topics, from the development of novel catalysts for sustainable energy applications to the design of advanced materials for biomedical devices. Dr. Wu’s innovative research has garnered widespread recognition, earning her numerous accolades and honors. Beyond her scientific achievements, she is also a dedicated mentor and educator, shaping the next generation of scientists through her mentorship and teaching. Dr. Wu’s passion for pushing the boundaries of knowledge and her unwavering commitment to excellence continue to inspire and influence scientists around the globe.

Professional Profile:

Education

Dr. Jinxiu Wu’s academic journey is marked by a pursuit of excellence and a commitment to advancing scientific knowledge. Graduating with distinction, Dr. Wu earned her Bachelor’s degree in Chemistry from Inner Mongolia University of Science and Technology, laying the foundation for her future endeavors. Her passion for research and innovation led her to pursue further studies, culminating in a Master’s degree in Materials Science and Engineering from the same institution. Undeterred by challenges, she continued her academic journey, obtaining her Ph.D. in Chemistry with a focus on rare earth luminescent materials from a prestigious university. Throughout her educational endeavors, Dr. Wu has demonstrated exceptional dedication, intellectual rigor, and a thirst for discovery, shaping her into the esteemed scientist and educator she is today.

Professional Experience

Dr. Jinxiu Wu’s professional journey is characterized by a rich tapestry of experiences and achievements in the realms of research, academia, and scientific leadership. As a seasoned professor at Inner Mongolia University of Science and Technology, she has played a pivotal role in shaping the next generation of scientists through her mentorship and teaching. Dr. Wu’s expertise lies in rare earth luminescent materials and their applications, a field in which she has made significant contributions through her research endeavors. Beyond the confines of academia, she has actively engaged with governmental and organizational bodies, participating in prestigious projects funded by the National Natural Science Foundation and the Ministry of Science and Technology. Her leadership as the Principal Investigator in numerous research projects underscores her prowess in scientific inquiry and innovation. Dr. Wu’s professional journey stands as a testament to her unwavering dedication to advancing scientific knowledge and making meaningful contributions to the field of chemistry and materials science.

Research Interest

Dr. Jinxiu Wu’s research interests are deeply rooted in the exploration of rare earth luminescent materials and their multifaceted applications. With a focus on sustainability and innovation, Dr. Wu delves into the synthesis, characterization, and utilization of rare earth compounds in various fields, including but not limited to, biological labeling, materials science, and environmental remediation. Her work extends to the development of novel fluorescent probes for biological imaging, the construction of luminescent micro/nanostructures, and the exploration of rare earth chitosan complexes for biomedical and environmental applications. Through her research endeavors, Dr. Wu seeks to uncover the unique properties and potential of rare earth materials, paving the way for advancements in diverse areas such as healthcare, energy, and environmental protection.

Award and Honor

Dr. Chengbin Yu’s research interests are deeply rooted in the fields of optimization, logistics, and supply chain management. He is particularly focused on developing advanced mathematical models and algorithms to solve complex problems in manufacturing systems and service operations. His work aims to enhance efficiency, reduce costs, and improve decision-making processes within these domains. Dr. Yu is also interested in exploring the applications of these models in real-world scenarios, ensuring that his theoretical contributions have practical and impactful implementations. His commitment to innovation drives his continuous exploration of new methodologies and technologies that can further advance the field of industrial engineering and operations research.

Research Skills

Dr. Jinxiu Wu’s exemplary contributions to the fields of chemistry and materials science have earned her numerous prestigious awards and honors, recognizing her outstanding achievements and dedication to scientific excellence. Among her notable accolades is the First Prize for Scientific and Technological Progress in Inner Mongolia, a testament to the impactful nature of her research endeavors. Her groundbreaking work in rare earth luminescent materials and their applications has also been acknowledged through various national and regional awards, showcasing her leadership and innovation in the scientific community. Additionally, Dr. Wu’s prolific research output has been recognized through her publication in esteemed domestic and international journals, with a significant number of her papers indexed by SCI and EI. Her continual pursuit of excellence and commitment to advancing scientific knowledge have solidified her reputation as a trailblazer in her field, earning her the respect and admiration of peers and colleagues alike.

Publications

  • Tuning and high temperature fluorescence properties of LaPO4

    + nanophosphors

    • Author: Wu, J., Wu, B., Wang, Q., Zhang, X., Xie, R.
    • Year: 2024
    • Citation: Optical Materials, 153, 115556
  • Molecular dynamics simulation and experimental study on the effect of surfactants on the compatibility of P(S-DVB)-SO4/CeO2 composite interface
    • Author: Jia, H., Zhang, H., Liang, M., Tan, X., Cao, Y.
    • Year: 2024
    • Citation: Journal of Materials Science, 59(18), pp. 7793–7807
  • Synthesis of Calcium Lanthanum Hydrotalcite and Its Effect on Thermal Stability of PVC | 钙镧类水滑石的合成及对 PVC 热稳定性能的影响
    • Author: Du, G., Zhao, J., Liu, Z., Hu, Y., Wu, J.
    • Year: 2024
    • Citation: Zhongguo Xitu Xuebao/Journal of the Chinese Rare Earth Society, 42(2), pp. 339–348
  • Adsorption behavior of H4POn (n = 8,7,6) groups on the F,Si-doped reduced CeO1.979(100) surfaces investigated by first-principles calculations
    • Author: Jia, H., Zhang, L., Lu, Y., Tan, X., Cao, Y.
    • Year: 2024
    • Citation: Materials Today Communications, 38, 107624
  • Microscopic mechanism of distinct mechanical properties of divinylbenzene reinforced cross-linked polystyrene revealed by molecular dynamics simulations
    • Author: Jia, H., Hu, J., Wu, J., Tan, X., Cao, Y.
    • Year: 2024
    • Citation: International Journal of Modern Physics B, 38(4), 2450061
  • Effect of Rare Earth Complexes Containing Benzophenone Structure on Light Stability of PVC | 含二苯甲酮结构的稀土配合物对 PVC 光稳定性能的影响
    • Author: Huang, X., Liu, Z., Du, G., Hu, Y., Wu, J.
    • Year: 2024
    • Citation: Zhongguo Xitu Xuebao/Journal of the Chinese Rare Earth Society, 42(1), pp. 160–167
  • Morphology regulation, small-size effect and fluorescence and magnetic properties of GdPO4·H2O

    +

    • Author: Wang, Q., Wu, J., Wu, B., Feng, F., Li, J.
    • Year: 2024
    • Citation: Materials Research Bulletin, 170, 112565
  • Effect of Lanthanum Cerium 2-Aminonicotinate Acid on Thermal Stability of PVC | 2-氨基烟酸镧铈对PVC 热稳定性的影响
    • Author: Yang, Y., Du, G., Liu, Z., Wu, J., Feng, F.
    • Year: 2024
    • Citation: Cailiao Daobao/Materials Reports, 38(7), 22060141
  • Preparation of intercalated hydrotalcite materials and its effect on thermal stability properties of polyvinyl chloride
    • Author: Du, G., Duan, J., Jia, P., Zhang, X., Li, J.
    • Year: 2024
    • Citation: Progress in Rubber, Plastics and Recycling Technology
  • Preparation of Cerium 2-Aminonicotinate Acid Rare Earth Stabilizer and Influence on PVC Thermal Stability | 2-氨基烟酸铈的制备及对 PVC 热稳定性影响
    • Author: Yang, Y., Du, G., Liu, Z., Wu, J., Feng, F.
    • Year: 2023
    • Citation: Zhongguo Xitu Xuebao/Journal of the Chinese Rare Earth Society, 41(6), pp. 1166–1176