Assoc. Prof. Dr. Shixiong Li | Inorganic Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Shixiong Li | Inorganic Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Shixiong Li,  Inorganic Chemistry,  Teacher at Wuzhou University, China

Dr. Shixiong Li is a dedicated environmental scientist and academician serving as a lecturer and associate professor at Wuzhou University. He is also a master’s supervisor at Guangxi University and holds multiple expert roles, including membership in the Guangxi Science and Technology Expert Database and the Wuzhou Environmental Emergency Expert Database. Dr. Li obtained his Ph.D. in Environmental Science and Engineering from South China University of Technology in 2018. His research interests lie in the synthesis of functional environmental materials and water resource reuse technologies. With a strong presence in scientific publishing, he has authored numerous papers in prestigious journals like Angewandte Chemie International Edition, Journal of Catalysis, and Inorganic Chemistry Frontiers. He also serves as a peer reviewer for high-impact journals. In addition to academia, he contributes to legal and civic activities as a people’s assessor at the Changzhou District Court.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Shixiong Li, currently serving as a teacher and researcher at Wuzhou University, has built a distinguished research career in the field of environmental chemistry. With a Ph.D. in Environmental Science and Engineering from South China University of Technology (2018), he has demonstrated strong academic training in environmental disciplines. Dr. Shixiong Li is a highly deserving candidate for the Research for “Environmental Chemistry Award”. His substantial contributions to environmental material synthesis and pollutant remediation directly align with the award’s mission to recognize impactful environmental chemistry research. His innovative approaches, quality publications, and practical focus on water purification and waste treatment place him among the leading researchers in this domain.

🎓Education:

Dr. Shixiong Li earned his Doctorate (Ph.D.) in Environmental Science and Engineering from South China University of Technology . His doctoral research focused on the design and synthesis of environmentally functional materials and the mechanisms underpinning water purification technologies. Prior to his Ph.D., Dr. Li completed his undergraduate and possibly master’s degrees (specific details not mentioned) likely in chemistry, materials science, or environmental engineering, forming a solid foundation for his current research. His academic journey reflects a strong commitment to interdisciplinary environmental studies, particularly involving the synthesis of metal-organic frameworks (MOFs), photocatalytic systems, and advanced adsorption materials. His education equipped him with a deep understanding of green chemistry, catalysis, nanomaterials, and environmental remediation technologies, which he now applies in both academic and real-world contexts. Dr. Li continues to expand his educational expertise through supervising graduate students and participating in academic collaborations at regional and international levels.

🏢Work Experience:

Dr. Shixiong Li currently serves as a full-time lecturer and associate professor at the School of Mechanical and Resource Engineering, Wuzhou University. He is also a recognized master’s supervisor at Guangxi University. Over the years, Dr. Li has contributed significantly to teaching, curriculum development, and guiding graduate research. His professional roles extend beyond teaching — he is an expert member of multiple scientific and technical committees, including the Guangxi Science and Technology Expert Database, Wuzhou Environmental Emergency Expert Database, and the Materials Expert Committee at Viser Publishing (Singapore). He also serves as a standardization expert and legal assessor in Wuzhou. His experience includes managing and executing national and regional research projects, particularly in the field of photocatalysis and wastewater treatment. Furthermore, he acts as a peer reviewer for elite scientific journals, such as JACS and Journal of Catalysis, demonstrating his prominence in the academic community.

🏅Awards: 

Dr. Shixiong Li has been recognized for his academic and professional excellence with various prestigious appointments and honors. He is a selected expert in the Guangxi Science and Technology Expert Database, indicating regional recognition of his expertise. In Wuzhou, he holds positions in the Environmental Emergency Expert Database and serves as a Standardization Expert, which reflect his contributions to public environmental safety and policy. His peer-reviewing roles in high-ranking SCI journals like Angewandte Chemie, JACS, and Inorganic Chemistry highlight international acknowledgment of his scientific merit. Furthermore, his appointment as a People’s Assessor at the Changzhou District Court demonstrates his trusted civic role in community and judicial matters. His invitation to the Materials Expert Committee of Viser Publishing (Singapore) further indicates global engagement in scientific publishing. Collectively, these honors underline his multifaceted contributions in research, public service, and scientific leadership.

🔬Research Focus:

Dr. Shixiong Li’s research centers on the design and synthesis of functional environmental materials, with a particular emphasis on metal-organic frameworks (MOFs) and their applications in photocatalysis, adsorption, and wastewater treatment. His work explores green, in-situ synthetic approaches for constructing Cu(I)/Cu(II) hybrid materials, aiming to degrade organic pollutants and remove heavy metals from aqueous systems efficiently. He investigates the mechanistic roles of inorganic ions and coordinated ligands in modulating the photocatalytic and adsorption performances of MOFs. Additionally, his current projects explore hydroxyl-modified two-dimensional Cu-based photocatalysts, revealing insights into molecular-level interactions that boost reactivity and selectivity. Dr. Li’s findings have advanced sustainable material applications for water reuse and environmental remediation. Through interdisciplinary approaches combining inorganic chemistry, materials science, and environmental engineering, his research contributes to scalable, eco-friendly technologies for real-world problems. His publications in top-tier journals and ongoing collaborations confirm the practical relevance and innovation of his scientific contributions.

Publication Top Notes:

1. Mechanism of Coordinated Anions Regulating the Photocatalytic Performance of Cu(I) Metal–Organic Frameworks

2. An Iron-Based Metal–Organic Framework with Strong Water Stability and Effective Adsorption of Methylene Blue from Wastewater

3. Zinc Complexes with Mixed Ligands and the Effect on Excitation and Emission Spectra by Changing the Binding Sites

4. Praseodymium–Selenium Connecting Selenotungstate Containing Mixed Building Blocks for Catalytic Synthesis of Aza-Heterocycles

5. A Two-Dimensional Cobalt-Based Metal–Organic Framework Efficiently Adsorbs Cr(VI) from Wastewater

6. Effect and Mechanism of Inorganic Ions on the Photocatalytic Performance of Amino Modified UIO-67 Type Metal–Organic Framework

7. Two‐Dimensional Copper‐Based Metal–Organic Framework for Efficient Removal of Methylene Blue from Wastewater

8. Performance and Mechanism of the Modified Group Regulated the MIL-101(Fe) Type Fenton-like Catalysts

9. A Bifunctional Three-Dimensional Zn(II) Metal–Organic Framework with Strong Luminescence and Adsorption Cr(VI) Properties

10. Effect and Mechanism of Inorganic Anions on the Adsorption of Cd²⁺ on Two-Dimensional Copper-Based Metal–Organic Framework

 

Athanassios Philippopoulos | Inorganic Chemistry | Best Researcher Award

Assoc Prof Dr. Athanassios Philippopoulos | Inorganic Chemistry | Best Researcher Award

Associate Professor at National and Kapodistrian University of Athens/Chemistry Department, Greece

Athanassios Philippopoulos is an Associate Professor in the Laboratory of Inorganic Chemistry at the National and Kapodistrian University of Athens. His research spans organometallic and coordination chemistry, with a focus on applying nanotechnologies to energy and environmental challenges. Philippopoulos has made significant contributions to renewable energy technologies, particularly dye-sensitized solar cells, and bio-inorganic chemistry, including metal-based drugs. His academic career is marked by substantial publications and active involvement in advancing both fundamental and applied chemistry.

Author Metrics

Scopus Profile

ORCID Profile

Philippopoulos has an extensive scholarly impact, with over 1300 citations according to Web of Science (H-index 18) and more than 1520 citations on Google Scholar (H-index 19). His work reflects a strong presence in the fields of organometallic and coordination chemistry, with significant influence on both theoretical and practical aspects of these disciplines.

Education

Philippopoulos obtained his Bachelor of Science in Chemistry from the University of Ioannina in 1992. He continued his studies at the same institution, completing his Ph.D. in Inorganic-Organometallic Chemistry in 1997. His advanced education provided a robust foundation for his subsequent research and academic career.

Research Focus

Philippopoulos’s research encompasses several key areas: organometallic and coordination chemistry, nanotechnologies for energy and environmental applications, and bio-inorganic chemistry. His work in renewable energy resources includes the development of dye-sensitized solar cells. Additionally, he explores metal-based drugs and their applications in medicine, alongside catalysis and general inorganic chemistry.

Professional Journey

Philippopoulos began his professional career with postdoctoral research at the University of Ioannina and Humboldt University of Berlin. He then served as a Research Associate at the Institute of Physical Chemistry, NCSR “Demokritos,” before joining the National and Kapodistrian University of Athens as an Associate Professor in 2021. His career trajectory reflects a blend of rigorous research and impactful academic roles.

Honors & Awards

Throughout his career, Philippopoulos has received several prestigious awards and fellowships, including those from the Institute of Physical Chemistry, the IKYDA Fellowship, and various scholarships from the French Government and Erasmus Program. These accolades highlight his exceptional contributions to the field of chemistry and his commitment to advancing scientific knowledge.

Publications Noted & Contributions

Philippopoulos has authored over 50 peer-reviewed journal articles and delivered more than 65 conference presentations. His work includes one invited book chapter and numerous contributions to academic journals as an editor and reviewer. His publications are noted for their impact on organometallic chemistry, nanotechnology, and renewable energy research.

Ruthenium <i>p</i>-Cymene Complexes Incorporating Substituted Pyridine–Quinoline-Based Ligands: Synthesis, Characterization, and Cytotoxic Properties

Publication Details:
Journal: Molecules
Date: July 2024
DOI: 10.3390/molecules29133215
Role: Author
Contributors: Afroditi Kokkosi, Elpida Garofallidou, Nikolaos Zacharopoulos, Nikolaos Tsoureas, Konstantina Diamanti, Nikolaos S. Thomaidis, Antigoni Cheilari, Christina Machalia, Evangelia Emmanouilidou, Athanassios Philippopoulos

This article explores the synthesis and characterization of ruthenium <i>p</i>-cymene complexes with substituted pyridine-quinoline ligands. It examines their potential cytotoxic properties, contributing to the field of metal-based anticancer agents.

Anti-Inflammatory and Antithrombotic Potential of Metal-Based Complexes and Porphyrins

Publication Details:
Journal: Compounds
Date: June 2024
DOI: 10.3390/compounds4020023
Role: Author
Contributors: Alexandros Tsoupras, Sofia Pafli, Charilaos Stylianoudakis, Kalliopi Ladomenou, C.A. Demopoulos, Athanassios Philippopoulos

This study evaluates the anti-inflammatory and antithrombotic activities of various metal-based complexes and porphyrins. The findings offer insights into their therapeutic potential for cardiovascular and inflammatory diseases.

First-Row Transition Metal Complexes Incorporating the 2-(2′-pyridyl)quinoxaline Ligand (pqx), as Potent Inflammatory Mediators: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin

Publication Details:
Journal: Molecules
Date: October 2023
DOI: 10.3390/molecules28196899
Role: Author
Contributors: Antigoni Margariti, Vasiliki D. Papakonstantinou, George Stamatakis, C.A. Demopoulos, Christina Machalia, Evangelia Emmanouilidou, Gregor Schnakenburg, Maria-Christina Nika, Nikolaos S. Thomaidis, Athanassios Philippopoulos

The paper focuses on the cytotoxic effects and biological activities of first-row transition metal complexes with 2-(2′-pyridyl)quinoxaline ligands. It investigates their role as inflammatory mediators and their impact on platelet-activating factors and thrombin.

Tin(II) and Tin(IV) Complexes Incorporating the Oxygen Tripodal Ligands [(<i>η</i><sup>5</sup>-C<sub>5</sub>R<sub>5</sub>)Co{P(OEt)<sub>2</sub>O}<sub>3</sub>]<sup>−</sup>, (R = H, Me; Et = -C<sub>2</sub>H<sub>5</sub>) as Potent Inflammatory Mediator Inhibitors: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin

Publication Details:
Journal: Molecules
Date: February 2023
DOI: 10.3390/molecules28041859
Role: Author
Contributors: Alexandros Kalampalidis, Artemis Damati, Demetrios Matthopoulos, Alexandros Tsoupras, C.A. Demopoulos, Gregor Schnakenburg, Athanassios Philippopoulos

This article investigates the cytotoxic properties and biological activities of tin(II) and tin(IV) complexes with oxygen tripodal ligands. It highlights their effectiveness as inhibitors of inflammatory mediators like PAF and thrombin.

Sterically Demanding Pyridine-Quinoline Anchoring Ligands as Building Blocks for Copper(<scp>i</scp>)-Based Dye-Sensitized Solar Cell (DSSC) Complexes

Publication Details:
Journal: Dalton Transactions
Date: 2022
DOI: 10.1039/d2dt02382b
Role: Author
Contributors: Anastasios Peppas, Demetrios Sokalis, Dorothea Perganti, Gregor Schnakenburg, Polycarpos Falaras, Athanassios Philippopoulos

This publication discusses the use of sterically demanding pyridine-quinoline ligands in designing copper(I)-based dye-sensitized solar cells. It contributes to the development of advanced materials for solar energy applications.

Research Timeline

Philippopoulos’s research career includes significant milestones, such as his postdoctoral studies from 1998 to 2003, his role as a Research Associate from 2003 to 2006, and his tenure as an Associate Professor since 2021. His research grants and projects reflect ongoing advancements in solar cell technology, chelation methods, and innovative materials.

Collaborations and Projects

Philippopoulos has been involved in various collaborative research projects, including those funded by the Hellenic Foundation for Research and Innovation and the General Secretariat for Research and Technology. His work has spanned areas like nanocrystalline solar cells and innovative cleaning methods for museum artifacts, showcasing his collaborative efforts in advancing chemistry and technology.

Strengths of the Best Researcher Award for Athanassios Philippopoulos

  1. Significant Scholarly Impact: Philippopoulos has made notable contributions to the fields of organometallic and coordination chemistry, with over 1300 citations on Web of Science and 1520 on Google Scholar. This indicates a strong influence and recognition of his work within the scientific community.
  2. Diverse Research Areas: His research spans several crucial areas, including renewable energy (dye-sensitized solar cells), bio-inorganic chemistry (metal-based drugs), and nanotechnologies. This broad focus demonstrates his versatility and impact across multiple subfields of chemistry.
  3. High-Quality Publications: Philippopoulos has published over 50 peer-reviewed journal articles and contributed to significant research outputs, such as studies on ruthenium complexes, metal-based drugs, and copper(I)-based dye-sensitized solar cells. This reflects his commitment to advancing scientific knowledge and addressing pressing challenges.
  4. Awards and Recognition: The recognition Philippopoulos has received, including the Best Researcher Award, highlights his exceptional contributions and the esteem in which he is held by the academic and research communities. His past honors from various prestigious institutions further validate his achievements.
  5. Active Academic Engagement: Philippopoulos’s role in numerous conference presentations and his involvement as an editor and reviewer for academic journals show his active engagement in the scientific community. This participation underscores his dedication to both research and the dissemination of knowledge.

Areas for Improvement

  1. Broader Research Collaborations: While Philippopoulos has been involved in several collaborative projects, expanding his network to include more international and interdisciplinary collaborations could enhance the scope and impact of his research.
  2. Interdisciplinary Integration: There is an opportunity to further integrate his research with other scientific disciplines, such as materials science or environmental engineering, to address complex challenges from multiple perspectives.
  3. Increased Public Outreach: Enhancing efforts to communicate his research findings to the general public and stakeholders outside the academic community could increase the societal impact and relevance of his work.
  4. Funding and Grants: While Philippopoulos has been involved in research funded by various grants, seeking additional funding opportunities or leading larger-scale, multi-institutional projects could provide more resources for ambitious research goals.
  5. Educational Contributions: Developing and incorporating innovative teaching methods or educational programs related to his research areas could further benefit students and early-career researchers, enriching the academic environment at his institution.

Conclusion

Athanassios Philippopoulos has made substantial contributions to inorganic chemistry, particularly in the areas of organometallic chemistry, renewable energy, and bio-inorganic chemistry. His extensive publication record, significant citations, and numerous awards reflect his outstanding research accomplishments and impact on the field. While there are areas for potential improvement, such as broadening collaborations and enhancing public outreach, his achievements and ongoing contributions position him as a leading figure in his field. The Best Researcher Award is a testament to his dedication and excellence in advancing scientific knowledge and addressing global challenges through chemistry.