Mr. ROSHAN KUMAR | Materials Chemistry | Best Researcher Award

Mr. ROSHAN KUMAR | Materials Chemistry | Best Researcher Award

Mr. ROSHAN KUMAR , Materials Chemistry , Senior Scientist at CSIR – National Metallurgical Laboratory, India

Dr. Roshan Kumar is a highly accomplished Senior Scientist at CSIR–National Metallurgical Laboratory, Jamshedpur. With an academic foundation from premier institutes like IIT Delhi and NIT Jamshedpur, he brings over a decade of research and industrial experience in materials science, mechanical design, and manufacturing. His expertise spans from engine integration design at Tata Motors to pioneering research in biodegradable implants, hydrogen energy, and advanced metallurgy at CSIR-NML. He is actively involved in national research projects including DRDO, DST, and CSIR initiatives. Known for his innovative thinking and multidisciplinary research capabilities, he has significantly contributed to the development of green hydrogen solutions and advanced manufacturing processes. Dr. Kumar is also a passionate advocate for technology-driven social change, participating in programs like Women Technology Park. With multiple publications in reputed international journals and awards to his credit, he continues to bridge academic excellence and applied engineering for societal advancement.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Roshan Kumar exemplifies the qualities of an outstanding researcher, with a strong academic background from premier institutions like IIT Delhi and NIT Jamshedpur, and over a decade of professional experience across industry and research. Currently a Senior Scientist at CSIR–National Metallurgical Laboratory, he has made significant contributions to materials research, particularly in biodegradable implants, hydrogen energy, computational modeling, and metal corrosion studies. His work bridges computational science with experimental materials design, reflecting innovation and societal relevance. Recognized with an All India Rank 3 in CSIR-NET and a Best Poster Award at an international hydrogen conference, he has authored impactful publications in high-ranking journals. His leadership in interdisciplinary CSIR and DST projects underscores his collaborative and forward-looking research approach. With a clear focus on materials science and clean energy, Dr. Kumar’s achievements demonstrate excellence, innovation, and real-world application. Dr. Roshan Kumar is highly suitable for the “Best Researcher Award”, given his exemplary track record in research innovation, publication impact, national-level project leadership, and meaningful contributions to sustainable and advanced technologies.

🎓Education:

Dr. Roshan Kumar’s educational journey showcases academic brilliance and technical depth. He earned his M.Tech in Design Engineering from Indian Institute of Technology (IIT) Delhi in 2015 with an impressive CGPA of 9.115, demonstrating strong command in mechanical design and computational engineering. He completed his B.Tech in Production Engineering and Management from NIT Jamshedpur in 2010, securing a GPA of 8.65, laying a robust foundation in manufacturing and production systems. His schooling reflects consistent academic performance with 72% in CBSE (2005) from VBCV, Jamshedpur, and 69.2% in Class X (2003) under the Jharkhand Board from SJS, Jamshedpur. His early academic achievements were further validated by an All India Rank 3 in CSIR-NET, earning him eligibility for the prestigious Shyama Prasad Mukherjee Fellowship (2013). This strong educational background has fueled his contributions to scientific research, innovation, and national R&D missions.

🏢Work Experience:

Dr. Roshan Kumar currently serves as a Senior Scientist at the Engineering Division of CSIR–NML, Jamshedpur (Dec 2019 – Present), where he leads and contributes to projects involving materials science, hydrogen energy, and biodegradable implants. Before joining CSIR, he worked as a Senior Manager at Tata Motors Limited (Sept 2015 – Nov 2019) in the Engine Integration Design department at the Engineering Research Centre, Jamshedpur. His role involved design validation, component analysis, and optimization in automotive engineering. Earlier, he began his career at Mahindra and Mahindra Limited (July 2010 – June 2011) as a Graduate Apprentice Trainee in the Engine Department at Rudrapur. Across these roles, Dr. Kumar has built a strong reputation in integrating academic research with industrial applications, especially in engine systems, manufacturing technology, and metallurgical engineering. His experience spans both applied research and industrial innovation, making him a valuable contributor to national science missions.

🏅Awards: 

Dr. Roshan Kumar has received notable recognition for his research excellence and academic accomplishments. He secured an All India Rank 3 in the CSIR-NET Examination, qualifying him for the Shyama Prasad Mukherjee Fellowship in 2013, one of the most prestigious fellowships for young researchers in India. In 2023, he was honored with the Best Poster Award at the 1st International Conference on Green Hydrogen for Global De-carbonization, recognizing his innovative work in clean energy research. His award-winning contributions span materials design, hydrogen generation, and advanced manufacturing. Additionally, his work is frequently cited and featured in reputed international journals, establishing his scholarly impact. These accolades highlight his dedication to solving global engineering challenges and his capacity to influence cutting-edge research in sustainable technologies, materials development, and design engineering. His involvement in national-level projects and active membership in multiple CSIR initiatives further solidify his reputation as a leading researcher in his field.

🔬Research Focus:

Dr. Roshan Kumar’s research is focused on materials engineering, design optimization, and clean energy technologies, with a keen interest in sustainable manufacturing. His key contributions include the development of biodegradable Mg/Zn-based implants, atomic-scale corrosion studies, and hydrogen generation through metal–water reactions. At CSIR–NML, he has led and co-led projects on machinability of Mg alloys, electroplating systems for medical applications, and weldability of high-strength steels in collaboration with DRDO and Tata Steel. His work blends computational simulations, molecular dynamics, and experimental validations to explore fracture toughness, fatigue behavior, and additive manufacturing processes. He also contributes to the CSIR Integrated Skill Training and Phenome India Health Cohort initiatives. His interdisciplinary approach leverages simulation, materials science, and product design to create real-world engineering solutions. Dr. Kumar’s work plays a pivotal role in India’s R&D landscape, especially in advancing green hydrogen energy, smart materials, and medical-grade alloys.

Publication Top Notes:

1. Atomic Investigation of Corrosion Mechanism and Surface Degradation of Fe–Cr–Ni Alloy in Presence of Water: Advanced Reactive Molecular Dynamics Simulation

Citations: 2

2. Atomistic Characterization of Multi Nano‑Crystal Formation Process in Fe–Cr–Ni Alloy During Directional Solidification: Perspective to the Additive Manufacturing

 

 

Assoc. Prof. Dr. Shixiong Li | Inorganic Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Shixiong Li | Inorganic Chemistry | Environmental Chemistry Award

Assoc. Prof. Dr. Shixiong Li,  Inorganic Chemistry,  Teacher at Wuzhou University, China

Dr. Shixiong Li is a dedicated environmental scientist and academician serving as a lecturer and associate professor at Wuzhou University. He is also a master’s supervisor at Guangxi University and holds multiple expert roles, including membership in the Guangxi Science and Technology Expert Database and the Wuzhou Environmental Emergency Expert Database. Dr. Li obtained his Ph.D. in Environmental Science and Engineering from South China University of Technology in 2018. His research interests lie in the synthesis of functional environmental materials and water resource reuse technologies. With a strong presence in scientific publishing, he has authored numerous papers in prestigious journals like Angewandte Chemie International Edition, Journal of Catalysis, and Inorganic Chemistry Frontiers. He also serves as a peer reviewer for high-impact journals. In addition to academia, he contributes to legal and civic activities as a people’s assessor at the Changzhou District Court.

Professional Profile :         

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Shixiong Li, currently serving as a teacher and researcher at Wuzhou University, has built a distinguished research career in the field of environmental chemistry. With a Ph.D. in Environmental Science and Engineering from South China University of Technology (2018), he has demonstrated strong academic training in environmental disciplines. Dr. Shixiong Li is a highly deserving candidate for the Research for “Environmental Chemistry Award”. His substantial contributions to environmental material synthesis and pollutant remediation directly align with the award’s mission to recognize impactful environmental chemistry research. His innovative approaches, quality publications, and practical focus on water purification and waste treatment place him among the leading researchers in this domain.

🎓Education:

Dr. Shixiong Li earned his Doctorate (Ph.D.) in Environmental Science and Engineering from South China University of Technology . His doctoral research focused on the design and synthesis of environmentally functional materials and the mechanisms underpinning water purification technologies. Prior to his Ph.D., Dr. Li completed his undergraduate and possibly master’s degrees (specific details not mentioned) likely in chemistry, materials science, or environmental engineering, forming a solid foundation for his current research. His academic journey reflects a strong commitment to interdisciplinary environmental studies, particularly involving the synthesis of metal-organic frameworks (MOFs), photocatalytic systems, and advanced adsorption materials. His education equipped him with a deep understanding of green chemistry, catalysis, nanomaterials, and environmental remediation technologies, which he now applies in both academic and real-world contexts. Dr. Li continues to expand his educational expertise through supervising graduate students and participating in academic collaborations at regional and international levels.

🏢Work Experience:

Dr. Shixiong Li currently serves as a full-time lecturer and associate professor at the School of Mechanical and Resource Engineering, Wuzhou University. He is also a recognized master’s supervisor at Guangxi University. Over the years, Dr. Li has contributed significantly to teaching, curriculum development, and guiding graduate research. His professional roles extend beyond teaching — he is an expert member of multiple scientific and technical committees, including the Guangxi Science and Technology Expert Database, Wuzhou Environmental Emergency Expert Database, and the Materials Expert Committee at Viser Publishing (Singapore). He also serves as a standardization expert and legal assessor in Wuzhou. His experience includes managing and executing national and regional research projects, particularly in the field of photocatalysis and wastewater treatment. Furthermore, he acts as a peer reviewer for elite scientific journals, such as JACS and Journal of Catalysis, demonstrating his prominence in the academic community.

🏅Awards: 

Dr. Shixiong Li has been recognized for his academic and professional excellence with various prestigious appointments and honors. He is a selected expert in the Guangxi Science and Technology Expert Database, indicating regional recognition of his expertise. In Wuzhou, he holds positions in the Environmental Emergency Expert Database and serves as a Standardization Expert, which reflect his contributions to public environmental safety and policy. His peer-reviewing roles in high-ranking SCI journals like Angewandte Chemie, JACS, and Inorganic Chemistry highlight international acknowledgment of his scientific merit. Furthermore, his appointment as a People’s Assessor at the Changzhou District Court demonstrates his trusted civic role in community and judicial matters. His invitation to the Materials Expert Committee of Viser Publishing (Singapore) further indicates global engagement in scientific publishing. Collectively, these honors underline his multifaceted contributions in research, public service, and scientific leadership.

🔬Research Focus:

Dr. Shixiong Li’s research centers on the design and synthesis of functional environmental materials, with a particular emphasis on metal-organic frameworks (MOFs) and their applications in photocatalysis, adsorption, and wastewater treatment. His work explores green, in-situ synthetic approaches for constructing Cu(I)/Cu(II) hybrid materials, aiming to degrade organic pollutants and remove heavy metals from aqueous systems efficiently. He investigates the mechanistic roles of inorganic ions and coordinated ligands in modulating the photocatalytic and adsorption performances of MOFs. Additionally, his current projects explore hydroxyl-modified two-dimensional Cu-based photocatalysts, revealing insights into molecular-level interactions that boost reactivity and selectivity. Dr. Li’s findings have advanced sustainable material applications for water reuse and environmental remediation. Through interdisciplinary approaches combining inorganic chemistry, materials science, and environmental engineering, his research contributes to scalable, eco-friendly technologies for real-world problems. His publications in top-tier journals and ongoing collaborations confirm the practical relevance and innovation of his scientific contributions.

Publication Top Notes:

1. Mechanism of Coordinated Anions Regulating the Photocatalytic Performance of Cu(I) Metal–Organic Frameworks

2. An Iron-Based Metal–Organic Framework with Strong Water Stability and Effective Adsorption of Methylene Blue from Wastewater

3. Zinc Complexes with Mixed Ligands and the Effect on Excitation and Emission Spectra by Changing the Binding Sites

4. Praseodymium–Selenium Connecting Selenotungstate Containing Mixed Building Blocks for Catalytic Synthesis of Aza-Heterocycles

5. A Two-Dimensional Cobalt-Based Metal–Organic Framework Efficiently Adsorbs Cr(VI) from Wastewater

6. Effect and Mechanism of Inorganic Ions on the Photocatalytic Performance of Amino Modified UIO-67 Type Metal–Organic Framework

7. Two‐Dimensional Copper‐Based Metal–Organic Framework for Efficient Removal of Methylene Blue from Wastewater

8. Performance and Mechanism of the Modified Group Regulated the MIL-101(Fe) Type Fenton-like Catalysts

9. A Bifunctional Three-Dimensional Zn(II) Metal–Organic Framework with Strong Luminescence and Adsorption Cr(VI) Properties

10. Effect and Mechanism of Inorganic Anions on the Adsorption of Cd²⁺ on Two-Dimensional Copper-Based Metal–Organic Framework