Qinggang Wang | Polymer Chemistry | Best Researcher Award

Prof. Dr. Qinggang Wang | Polymer Chemistry | Best Researcher Award

Prof. Dr. Qinggang Wang | Qingdao Institute of Bioenergy and Bioprocess Technology | China

Prof. Dr. Qinggang Wang , is a distinguished professor at the Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, specializing in sustainable materials science, polyolefin rubbers synthesis, and chiral polymers synthesis. He earned his B.S. degree in Chemistry from Zhengzhou University in 2005 under the supervision of Prof. Maoping Song and completed his Ph.D. at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, in 2010 with Prof. Yong Tang. From 2011 to 2015, he conducted postdoctoral research at the Max-Planck-Institut für Kohlenforschung, Germany, under the guidance of Nobel Laureate Prof. Dr. Benjamin List, where he advanced expertise in catalytic asymmetric synthesis and polymerization chemistry. Since 2015, he has served as a professor at CAS, where his pioneering work has contributed to the development of chemically recyclable polymers, circular materials economy strategies, and innovative catalytic systems for polymerization and depolymerization. His scholarly impact is demonstrated by 79 publications, 1,274 citations from 816 documents, and an h-index of 20. His notable publications in Green Chemistry, Macromolecules, ACS Sustainable Chemistry & Engineering, and JACS highlight groundbreaking contributions, including chemical recycling of PLA plastics, asymmetric kinetic resolution polymerization, and transesterification catalysis for sustainable polyesters. Recognized with the “ZhuLiYueHua Fellowship” (2009) and the “Hundred-Talent Program” award of CAS (2015), Prof. Wang continues to lead research bridging polymer chemistry with sustainability, contributing transformative solutions to global challenges in materials science and green chemistry.

Profile:  Scopus | Orcid

Featured Publications

  • Chai, M., Xu, G., Yang, R., Sun, H., & Wang, Q. (2024). Degradation product-promoted depolymerization strategy for chemical recycling of poly(bisphenol A carbonate). Molecules, 29(3), 640.

  • Han, Z., Zhang, Y., Wang, L., Zhu, G., Kuang, J., Zhu, G., Xu, G., & Wang, Q. (2023). 3,4-Enhanced polymerization of isoprene catalyzed by side-arm tridentate iminopyridine iron complex with high activity: Optimization via response surface methodology. Polymers, 15(5), 1231.

  • Zhao, M., Ma, Y., Zhang, X., Wang, L., Zhu, G., & Wang, Q. (2022). Synthesis, characterization and catalytic property studies for isoprene polymerization of iron complexes bearing unionized pyridine-oxime ligands. Polymers, 14(17), 3612.

  • Mahmood, Q., Xu, G., Zhou, L., Guo, X., & Wang, Q. (2020). Chiral 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)-catalyzed stereoselective ring-opening polymerization of rac-lactide: High reactivity for isotactic enriched polylactides (PLAs). Polymers, 12(10), 2365.

  • [Author(s)]. (2017, February 9). Solid-phase synthesis for novel nerve agent adducted nonapeptides as biomarkers. Tetrahedron Letters. [Details on volume, issue, page range, and DOI are needed for full citation].

 

 

Dr. Yinfu Luo | Polymer Chemistry | Material Chemistry Award

Dr. Yinfu Luo | Polymer Chemistry | Material Chemistry Award

Dr. Yinfu Luo , Polymer Chemistry, Associate Professor at Sichuan University, China 

Dr. Yinfu Luo is an Associate Professor at the State Key Laboratory of Advanced Polymer Materials, Sichuan University. His research focuses on flame retardancy and high-performance modification of polyimide and polyurethane, as well as ablation and heat resistance of phenolic resin and silicone rubber. Dr. Luo has contributed to the development of advanced polymer materials with enhanced thermal stability and mechanical properties, addressing critical challenges in aerospace and defense applications. His work has been published in reputable journals, reflecting his commitment to advancing polymer science and engineering.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Yinfu Luo’s research is deeply rooted in the chemistry of advanced polymer materials, particularly focusing on polyimides, polyurethanes, phenolic resins, and silicone rubbers. His work addresses crucial challenges in the synthesis, modification, and performance enhancement of these materials. A significant part of Dr. Luo’s research involves flame retardancy and high-performance modifications to improve the heat resistance and mechanical properties of polymers—key issues in material chemistry with applications in aerospace, defense, and electronics. Dr. Luo’s consistent publication in prestigious journals like Industrial & Engineering Chemistry Research, Polymer, and Journal of Applied Polymer Science demonstrates recognition and impact within the material chemistry community. Dr. Yinfu Luo exemplifies the qualities that the “Material Chemistry Award” aims to recognize: innovative research, strong scientific contributions, and practical advancements in polymer material chemistry. His expertise in flame retardant polymers and thermal-resistant materials, combined with a robust publication record and focus on real-world applications, makes him a highly suitable candidate. Awarding Dr. Luo would acknowledge his valuable contributions to advancing the frontiers of material chemistry and inspire continued innovation in the field.

🎓Education:

Dr. Luo completed his undergraduate studies in Materials Chemistry at Zhengzhou University from 2012 to 2016. He then pursued a Master’s degree in Materials Science at the Polymer Research Institute of Sichuan University from 2016 to 2019. Continuing at the same institute, he earned his Ph.D. in Materials Science between 2019 and 2022. His academic journey has been marked by a strong focus on polymer materials, laying a solid foundation for his subsequent research endeavors.

🏢Work Experience:

Since July 2022, Dr. Luo has been serving as a full-time postdoctoral researcher at the Polymer Research Institute of Sichuan University. In this role, he has been actively involved in projects related to the design and fabrication of high-performance polymer foams and resins. His work includes the development of green flame-retardant polyurethane foams and high-strength rigid polyimide materials, contributing to national projects in aerospace and defense sectors.

🏅Awards: 

While specific awards and honors are not listed in the available information, Dr. Luo’s contributions to polymer science, particularly in the development of flame-retardant and high-performance materials, have been recognized through publications in esteemed journals and involvement in significant national projects. His work supports critical applications in aerospace and defense, indicating a high level of trust and recognition in his expertise.

🔬Research Focus:

Dr. Luo’s research centers on the development of advanced polymer materials with enhanced thermal and mechanical properties. His work includes the design and synthesis of flame-retardant polyurethane foams, high-strength polyimide foams, and heat-resistant phenolic resins. By constructing dual crosslinking network structures and exploring active crosslinking strategies, he aims to improve the performance of polymer foams for applications in extreme environments. His research addresses the need for materials that can withstand high temperatures and mechanical stress, particularly in aerospace and defense industries.

Publication Top Notes:

1. Constructing a Carborane-Hybridized Cross-Linked Network Endows Phenolic Resin with Excellent Structural Thermo-Oxidative and Ablative Resistance

2. Constructing Layered Structure Improves Thermal Protection Performance of Silicone Rubber-Based Composites under Coupled Mechanical-Thermal-Oxidative Conditions

3. Lightweight Copolymerized Polyimide Foams Containing Trifluoromethyl and Siloxane Moieties for Thermal Insulation and Hydrophobic Applications

4. Tunable 1T-Phase MoS₂/CNT Reinforced Carbon Foams for Enhanced Low-Frequency Electromagnetic Wave Absorption

5. Fabrication of Lightweight Polyimide Aerogels with Excellent Mechanical and Thermal Properties by Changing the Dianhydride Structures

 

 

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki , Environmental Chemistry , Jan Evangelista Purkyne University , Czech Republic

Dr. Karim Al Souki is a postdoctoral researcher and assistant professor at the Faculty of Environment, Jan Evangelista Purkyne University (UJEP), Czechia. With a Ph.D. in Earth and Universe Sciences from Lille 1 University, France, his academic journey reflects a strong foundation in plant biology and environmental sciences. Dr. Al Souki’s research spans phytoremediation, bioremediation, biochar utilization, and climate change mitigation through sustainable phytotechnology. He is a key contributor to international projects funded by NATO, Erasmus+, and Interreg, focusing on ecosystem restoration, water management, and environmental biotechnology. As an educator, he has taught courses across Europe on subjects such as environmental biotechnology, phytotechnology, and bio-economy. Dr. Al Souki’s interdisciplinary approach blends ecological theory with applied environmental solutions, making significant contributions to marginal land restoration and water pollution mitigation. His work promotes sustainability, ecological awareness, and environmental resilience through innovation and education.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

With a Ph.D. in Earth and Universe Sciences from Lille 1 University (France), and two Master’s degrees in Phyto-ecology and Plant Biology from Lebanese University, Dr. Karim Al Souki demonstrates a solid and multidisciplinary academic foundation. Dr. Karim Al Souki  leads and contributes to cutting-edge projects on phytoremediation, biochar technology, and environmental biotechnology—directly addressing climate change, pollution mitigation, and sustainable soil management. His research covers analytical techniques (FTIR, TGA, stable isotopes, DNA extraction), linking practical fieldwork with lab-based precision, ensuring both academic rigor and societal relevance. His role as project supervisor in initiatives like IDEAL and NATO-SPS illustrates leadership in shaping future environmental policies and technologies. Dr. Karim Al Souki is an ideal candidate for the “Best Researcher Award”, given his consistent, interdisciplinary contributions to environmental sciences. His research directly supports global sustainability goals through practical, innovative, and scalable solutions. Furthermore, his educational outreach, cross-border collaborations, and commitment to solving real-world ecological problems distinguish him as a researcher of international repute. This award would recognize and further empower his impactful scientific journey.

🎓Education:

Dr. Al Souki pursued his academic studies in biology and environmental sciences. He earned his Bachelor’s degree in General Biology (2008–2010), followed by a Master 1 in Plant Biology and Environment (2010–2011), and a Master 2 in Phyto-ecology, Resources, and Security Applications (2011–2012), all from Lebanese University, Lebanon. He then completed his Ph.D. in Earth and Universe Sciences at LGCgE, ISA-Lille, Lille 1 University of Sciences and Technologies, France (2014–2017). His academic foundation combines ecological sciences, environmental applications, and molecular understanding of plant-soil interactions. This educational pathway equipped him with the necessary tools to integrate ecological theory with practical environmental solutions. His training in Europe and the Middle East enabled him to adopt a multidisciplinary perspective and work in cross-cultural academic and research environments. His education has laid the groundwork for his specialization in environmental biotechnology, phytoremediation, and biochar applications.

🏢Work Experience:

Since October 2018, Dr. Karim Al Souki has been serving as a Post-doctoral researcher and Assistant Professor at UJEP, Czechia, where he teaches and conducts advanced research in environmental sciences. His prior experience includes teaching roles at ESME Sudria (France) and private institutions in Lille, where he lectured in phytoecology, molecular biology, and environmental science. He has supervised and contributed to numerous EU- and NATO-funded projects related to phytotechnology, biochar, soil-plant interactions, and wastewater treatment. His pedagogical contributions span multiple European universities and platforms, such as Erasmus, COIL, and ISA-Lille. He has taught subjects including Bioremediation, Bio-economy, Environmental Biotechnology, and Climate Change. Dr. Al Souki’s interdisciplinary teaching and research experience enable him to link theoretical knowledge with field-based applications, fostering student engagement and scientific problem-solving skills relevant to contemporary ecological challenges.

🏅Awards: 

Dr. Karim Al Souki has been recognized for his impactful research and cross-border educational initiatives. He is the Principal Investigator or Supervisor on several prestigious projects funded by international agencies such as NATO Science for Peace and Security Programme, Interreg (IDEAL project), and Erasmus+, highlighting his leadership in environmental science and sustainability education. He received the UJEP Internal Grant Agency funding multiple times (2021–2023), supporting his innovative work on biochar and Miscanthus x giganteus in soil restoration. He was awarded the Usti nad Labem region grant for young researchers for his study on quinoa in polluted soils. His consistent success in securing competitive research grants attests to the scientific merit and societal relevance of his projects. These accolades recognize his commitment to ecosystem services, educational outreach, and environmental restoration, and affirm his role as a rising figure in applied environmental sciences and international academic collaboration.

🔬Research Focus:

Dr. Al Souki’s research centers on phytotechnology, bioremediation, biochar characterization, and ecosystem service enhancement in marginal and contaminated soils. He specializes in using Miscanthus x giganteus and quinoa to rehabilitate former military lands and toxic-element-polluted environments. His research integrates stable isotope analysis, DNA-based microbial community profiling, and plant physiological assessments to explore rhizospheric interactions, nutrient cycling, and carbon sequestration. His work on biochar, especially its physico-chemical and ecotoxicological properties, supports sustainable agricultural and water reuse practices. His active projects include NATO-funded studies on climate change mitigation and EU-supported educational modules for water sustainability in the Elbe/Labe basin. His interdisciplinary approach links environmental microbiology, plant ecophysiology, and green chemistry, targeting real-world environmental problems with practical, nature-based solutions. His goal is to bridge science and education to improve soil health, water quality, and resilience against climate change.

Publication Top Notes:

1. An overview of potentially toxic element pollution in soil around lead–zinc mining areas

2. A comprehensive evaluation of the environmental and health risks associated with the potential utilization of chars produced from tires, electro-waste plastics and biomass

3. Characterizations of ash derived from the crops’ waste biomass for soil improvement and assisted phytoremediation

4. A 6-year review status on soil pollution in coal mining areas from Europe

5. Extracted rapeseed meal biochar combined with digestate as a soil amendment: Effect on lettuce (Lactuca sativa L.) biomass yield and concentration of bioavailable element fraction in the soil

6. Miscanthus x giganteus stress tolerance and phytoremediation capacities in highly diesel contaminated soils

7. The influence of diesel contaminated soil on Miscanthus x giganteus biomass thermal utilization and pyrolysis products composition

8. Evaluation of Miscanthus × giganteus Tolerance to Trace Element Stress: Field Experiment with Soils Possessing Gradient Cd, Pb, and Zn Concentrations

9. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate

10. Utilization of Biochar for Eliminating Residual Pharmaceuticals from Wastewater Used in Agricultural Irrigation: Application to Ryegrass

 

 

 

 

Mrs. Katsiaryna Khainskaya | Polymer Chemistry | Best Researcher Award

Mrs. Katsiaryna Khainskaya | Polymer Chemistry | Best Researcher Award

Mrs. Katsiaryna Khainskaya , Polymer Chemistry , Junior researcher at Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Belarus

Katsiaryna Khainskaya 🇧🇾 is a dynamic Junior Researcher at the Institute of Chemistry of New Materials, National Academy of Sciences of Belarus. With a strong foundation in chemistry and nanotechnology, she specializes in synthesizing polysaccharide derivatives with phenolic acids for advanced biomedical applications. Fluent in Russian and Belarusian, and proficient in English, she brings interdisciplinary expertise to the development of functional materials for drug delivery. She is skilled in atomic force microscopy, dynamic light scattering, spectrophotometry, and colloidal chemistry. Her active participation in international conferences and collaborative research projects highlights her global scientific engagement. A member of the Council of Young Scientists, she contributes to innovations in biopolymer-based materials and encapsulation techniques. Her recent work includes the development of multifunctional wound-healing agents and nanocomposites with synergistic antibacterial effects. Passionate, analytical, and dedicated, Katsiaryna is emerging as a promising scientist in the fields of nanobiomaterials and nanochemistry.

Professional Profile :         

Orcid 

Summary of Suitability for Award:

Katsiaryna Khainskaya, a promising junior researcher at the Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, has demonstrated a deep commitment to advancing nanobiomaterials and polysaccharide-based functional systems. Her research combines interdisciplinary expertise in nanotechnology, colloidal chemistry, radiation chemistry, and biomedicine. She has contributed to several innovative projects involving chitosan derivatives, silver nanoparticles, and mucoadhesive systems for drug delivery and wound healing. . She has actively participated in international conferences, received a research diploma, and is involved in multiple ongoing projects aimed at developing smart, sustainable biomedical materials. Her technical skills span AFM, DLS, lyophilization, and spectroscopy, evidencing strong laboratory proficiency. Katsiaryna Khainskaya is a highly suitable candidate for the “Best Researcher Awards”. Despite being early in her career, her research demonstrates innovation, interdisciplinarity, and societal relevance. Her contributions to nanobiomaterials and biomedical polymers are not only academically sound but hold translational potential for healthcare applications. She exemplifies the qualities of a rising scientific leader and merits recognition for her impactful and forward-thinking research.

🎓Education:

Katsiaryna earned her degree in Chemistry from Belarusian State University (2018–2023), with a specialization in radiation chemistry and environmental sciences.  Her academic training covered a comprehensive range of subjects including inorganic, organic, analytical, and physical chemistry, alongside advanced topics such as nanochemistry, dosimetry, colloidal chemistry, and radiation safety. Her thesis focused on the “Preparation and properties of complexes based on alginate-Ag nanocomposites with enrofloxacin,” combining nanotechnology and pharmacology. She also undertook specialized professional development, including a certificate program on radioactive waste processing (Rosatom Technical Academy, 2021) and a 2024 seminar on mucoadhesive chitosan nanoparticles at the Institute of High Molecular Compounds, St. Petersburg.  Her interdisciplinary education has equipped her with the necessary theoretical and technical skills to contribute to the development of innovative drug delivery systems and advanced materials for biomedical and environmental applications.

🏢Work Experience:

Katsiaryna Khainskaya began her research career as a Trainee Junior Researcher at the Institute of Chemistry of New Materials of the NAS of Belarus in April 2023, quickly progressing to Junior Researcher by August 2023.Her core responsibilities include the synthesis of polysaccharide derivatives and their functional characterization using techniques such as AFM, optical microscopy, and electrophoretic mobility. She has hands-on experience in developing colloidal systems with silver nanoparticles for drug delivery and encapsulation of biologically active substances. As a member of the Council of Young Scientists, she also engages in research planning and youth science promotion. Her projects span antibiotic nanocomposites for aquaculture, antioxidant-rich biopolymer carriers, and mucoadhesive biomedical coatings. She has presented her work at international conferences in Spain, Russia, and across Belarus and Tajikistan. Her dedication and rapid growth reflect a strong commitment to scientific excellence and interdisciplinary collaboration.

🏅Awards: 

Katsiaryna has received multiple recognitions for her scientific contributions  In January 2025, she secured 3rd place in the “Young Scientist of the IChNM of NAS of Belarus” competition. She earned a professional development certificate from Rosatom Technical Academy in radioactive waste treatment (2021)  and has participated in several prestigious conferences and training events. Notable among them are her presentation at the 13th International Colloids Conference in Spain (2024)  and her active participation in youth science forums, such as “Youth in Science” (2023, 2024) and the School of Chemists of the CIS in Dushanbe (2023).She also took part in Belarus State Technological University’s 89th faculty conference (2025), showcasing smart multilayer biomedical coatings. Each recognition reflects her active engagement with contemporary chemical research and her growing reputation in the field of functional nanobiomaterials and nanotechnology.

🔬Research Focus:

Katsiaryna’s research is centered on the synthesis and application of polysaccharide-based nanomaterials, particularly chitosan and alginate derivatives. Her work focuses on combining these biopolymers with phenolic acids and silver nanoparticles to create functional materials with enhanced antioxidant, antimicrobial, and drug delivery capabilities. She has developed systems for encapsulating biologically active compounds to improve their stability and targeted delivery, contributing to innovative wound healing and antibacterial treatments.  Her current projects include multilayer mucoadhesive patches for oral diseases, encapsulated chlorophyll systems, and antimicrobial nanocomposites for aquaculture. She’s also involved in industrial collaborations, such as the development of holographic foil materials.  Her interdisciplinary approach integrates chemistry, nanotechnology, and biology, aiming to create next-generation biofunctional materials for environmental, medical, and pharmaceutical applications. Her contributions are paving the way for biopolymer innovations in healthcare and sustainable material science.

Publication Top Notes:

1. Chitosan-Gallic Acid Conjugate with Enhanced Functional Properties and Synergistic Wound Healing Effect

2. Study of the Interaction Between Biogenic Alginate-Ag Nanoparticles and Enrofloxacin: Combinatory Antibacterial Effect and Nanocomposite Formation