Prof. Mohammad Bakherad | Organic Chemistry | Best Researcher Award

Prof. Mohammad Bakherad | Organic Chemistry | Best Researcher Award

Prof. Mohammad Bakherad | Organic Chemistry | Researcher at Shahrood University of Technology, Iran

Mohammad Bakherad, born in 1969 in Mashhad, Iran, is a distinguished Professor of Organic Chemistry at Shahrood University of Technology. He earned his B.Sc. in Chemistry from Isfahan University (1992) and completed his M.Sc. (1995) and Ph.D. (2002) at Ferdowsi University of Mashhad under the mentorship of Majid M. Heravi and Mohammad Rahimizadeh. With a prolific research career, he has published over 147 ISI-indexed papers, contributing significantly to organic synthesis, heterocyclic chemistry, catalysis, and green chemistry. His expertise in organometallic reagents and innovative synthetic methodologies has gained international recognition. He has mentored numerous students and led cutting-edge research projects. His commitment to academic excellence and scientific contributions continues to shape the field of organic chemistry in Iran and beyond.

Professional Profile :         

Scopus 

Summary of Suitability for Award:

Dr. Mohammad Bakherad is a highly accomplished researcher in the field of organic chemistry, particularly in catalysis, heterocyclic chemistry, and green synthetic methodologies. His academic journey, from earning a Ph.D. in Organic Chemistry at Ferdowsi University of Mashhad to becoming a full Professor at Shahrood University of Technology, demonstrates his dedication to research and innovation. With over 147 ISI-cited papers, his contributions have significantly advanced the understanding and application of novel catalytic and environmentally friendly synthetic approaches. Dr. Mohammad Bakherad’s outstanding publication record, pioneering research in organic synthesis and catalysis, and commitment to sustainable chemistry make him an exceptional candidate for the “Best Researcher Award.” His work has had a profound impact on the scientific community, shaping the future of organic chemistry. His innovative methodologies, leadership in academia, and dedication to mentorship and collaborative research make him highly deserving of this recognition.

🎓Education:

Mohammad Bakherad pursued his B.Sc. in Chemistry at Isfahan University, Iran, from 1988 to 1992. He then continued his academic journey at Ferdowsi University of Mashhad, where he obtained his M.Sc. in Organic Chemistry (1993–1996) and later earned his Ph.D. in Organic Chemistry (1996–2002). His doctoral research was conducted under the supervision of esteemed professors Majid M. Heravi and Mohammad Rahimizadeh, focusing on advanced organic synthesis and heterocyclic chemistry. His academic background provided him with a strong foundation in organic methodologies, catalysis, and the development of novel heterocyclic compounds. Through rigorous training and research, he developed expertise in the synthesis of organic frameworks, organometallic reagents, and green chemistry applications. His educational journey laid the groundwork for a prolific career in organic synthesis, contributing significantly to the field with numerous publications and advancements in catalytic and environmentally friendly synthetic approaches.

🏢Work Experience:

Dr. Mohammad Bakherad has had an extensive academic career, beginning as an Assistant Professor of Organic Chemistry at Shahrood University of Technology in July 2003. His dedication and contributions to research and teaching led to his promotion to Associate Professor in January 2008. In February 2013, he achieved the rank of Professor, solidifying his position as a leading researcher in organic and heterocyclic chemistry. Throughout his career, he has mentored numerous students, guiding them in advanced research methodologies and fostering innovation in catalysis and organic synthesis. His teaching experience spans undergraduate and postgraduate levels, covering specialized topics such as organometallic chemistry, synthetic methodologies, and green chemistry. Additionally, he has been actively involved in collaborative research projects, contributing to cutting-edge developments in organic chemistry. His expertise has led to significant advancements in sustainable chemical processes and the development of novel heterocyclic frameworks.

🏅Awards: 

Dr. Mohammad Bakherad has received numerous accolades in recognition of his outstanding contributions to organic chemistry. He has been honored for his pioneering work in catalysis, green synthetic methods, and heterocyclic chemistry. His research excellence has been acknowledged through multiple awards from national and international scientific organizations. He has been invited as a keynote speaker at prestigious conferences, highlighting his expertise in organic synthesis and catalytic methodologies. His scholarly achievements include being recognized for his high-impact publications in leading scientific journals. Furthermore, his commitment to mentorship and academic excellence has earned him appreciation from students and colleagues alike. As a distinguished researcher, he has also been part of various scientific committees, contributing to the advancement of chemistry education and research. His contributions continue to shape the field, fostering innovation and inspiring future generations of chemists.

🔬Research Focus:

Dr. Mohammad Bakherad’s research focuses on organic synthesis, particularly in heterocyclic chemistry, catalysis, and green synthetic methodologies. He has made significant contributions to the development of novel heterocyclic compounds and organometallic reagents, which play a crucial role in medicinal and materials chemistry. His work in catalytic processes has led to innovative and environmentally friendly approaches for synthesizing complex organic molecules. He has explored palladium-catalyzed reactions, Sonogashira coupling, and cyclocondensation techniques to design efficient synthetic routes. Additionally, his interest in sustainable chemistry has driven his research on recyclable catalysts and water-based reactions, reducing the environmental impact of chemical synthesis. His extensive studies on heteroannulation reactions have resulted in the creation of novel bioactive molecules with potential pharmaceutical applications. With over 147 ISI-cited papers, his research continues to influence advancements in organic and green chemistry, making a lasting impact on the scientific community.

Publication Top Notes:

Synthesis, QSAR modeling, and molecular docking studies of 1,2,3-triazole-pyrazole hybrids as significant anti-cancer and anti-microbial agents

Synthesis of new hybrid compounds of imidazo[1,2-a]pyrimidine/pyridine based on quinoxaline through palladium-catalyzed coupling reactions and heteroannulation

A comprehensive review: medicinal applications and diverse synthetic strategies of pyrimidine-based compounds leveraging Suzuki and Sonogashira reactions

Synthesis, and molecular docking studies of novel 1,2,3-triazoles-linked pyrazole carboxamides as significant anti-microbial and anti-cancer agents

Copper catalysts supported by dehydroacetic acid chitosan schiff base for CuAAC click reaction in water

Citations: 1

Furo, Pyrano, and Pyrido[2,3-d]Pyrimidines: A Comprehensive Review of Synthesis and Medicinal Applications

Citations: 5

Synthesis of new 1,2,3-triazole-linked pyrimidines by click reaction

Synthesis of new 4,5-disubstituted-6-methyl-2-(methylthio) pyrimidines via C-C coupling reactions

New Hybrid Compounds from Imidazole and 1,2,3-Triazole: Efficient Synthesis of Highly Substituted Imidazoles and Construction of Their Novel Hybrid Compounds by Copper-Catalyzed Click Reaction

Citations: 1

An Efficient Synthesis of New Pyrazole-Linked Oxazoles via Sonogashira Coupling Reaction

Citations: 2

Prof. Dr. Helin Niu | Inorganic Chemistry | Best Researcher Award

Prof. Dr. Helin Niu | Inorganic Chemistry | Best Researcher Award

Prof. Dr. Helin Niu , Anhui University , China

Prof. Dr. Helin Niu (牛和林) is a distinguished Professor and Head of the Chemistry Department at Anhui University, China. With a Ph.D. from the University of Science and Technology of China, his expertise lies in the synthesis and application of novel photoelectric functional materials. His research spans energy science, food science, and life science, focusing on developing advanced materials for environmental and technological applications. Prof. Helin Niu has secured multiple prestigious research grants, including funding from the National Natural Science Foundation of China. He has held academic positions at Korea University and conducted postdoctoral research at Hefei National Laboratory for Physical Sciences. His contributions to material chemistry have led to innovative advancements in flexible electronic devices, supercapacitors, and metal-organic frameworks. With numerous high-impact publications, he is a leader in inorganic chemistry and materials chemistry, actively mentoring Ph.D. students and advancing the field through interdisciplinary research.

Professional Profile:

Scopus

Summary of Suitability for Award:

Prof. Helin Niu is a highly accomplished researcher in the field of inorganic and materials chemistry, making him a strong candidate for the Best Researcher Award. As a Professor, Ph.D. Supervisor, and Head of the Chemistry Department at Anhui University, his contributions extend beyond research, impacting education and scientific leadership. His work on photoelectric functional materials, energy storage systems, and metal-organic frameworks has led to groundbreaking innovations in material science. Prof. Helin Niu’s exceptional research output, leadership in academia, and contributions to material chemistry innovations make him highly deserving of the Best Researcher Award. His commitment to advancing scientific knowledge, mentoring young researchers, and securing competitive funding positions him as a leader in modern chemistry. Recognizing him with this award would acknowledge not only his research excellence but also his significant impact on scientific progress and innovation.

🎓Education:

Prof. Helin Niu obtained his Ph.D. in Chemistry from the University of Science and Technology of China. His doctoral research, under the supervision of Professor Qian-Wang Chen, focused on the synthesis and mechanism studies of functional materials. His academic journey laid a strong foundation for his expertise in inorganic chemistry and materials chemistry. Throughout his studies, he developed a deep understanding of chemical preparation, performance evaluation, and the applications of novel materials. His research training at one of China’s top institutions provided him with extensive experience in advanced analytical techniques, computational modeling, and nanomaterial synthesis. His passion for chemistry led him to explore the intersections of photoelectric materials, energy storage, and environmental applications. His education equipped him with the skills to conduct cutting-edge research and develop innovative solutions for next-generation functional materials, establishing him as a leading scientist in his field.

🏢Work Experience:

Prof. Helin Niu has held multiple prestigious academic and research positions. Currently, he serves as a Professor and Ph.D. Supervisor at the School of Chemistry and Chemical Engineering, Anhui University, where he also leads the Chemistry Department. He has been instrumental in shaping the university’s research direction in advanced material science. His international experience includes serving as a Research Lecturer at Korea University’s Center for Advanced Device Materials, where he contributed to material innovation. Additionally, he completed a postdoctoral research fellowship at the Hefei National Laboratory for Physical Sciences, further deepening his expertise in nanoscale material synthesis and characterization. Over the years, he has led numerous funded projects, collaborated with industrial partners, and guided students in pioneering research. His commitment to scientific advancement and mentorship has made him a key figure in China’s inorganic chemistry and materials science community.

🏅Awards: 

Prof. Helin Niu has received numerous accolades for his groundbreaking research in chemistry. His work has been recognized with prestigious grants from the National Natural Science Foundation of China, Postdoctoral Science Foundation of China, and the Ministry of Education’s Research Start-up Fund for Returned Scholars. He has also secured funding from industry leaders, including Shanghai Tobacco Group Corporation and Shanghai Haowei Chemical Co., Ltd. His scientific excellence has been acknowledged through competitive provincial awards, including support from the Anhui Provincial Department of Education and the Natural Science Foundation of Anhui Province. In recognition of his innovative contributions, he has been invited as a keynote speaker at major scientific conferences and serves as a reviewer for high-impact journals. His dedication to advancing material chemistry and his influence in academia make him a well-respected leader in his field.

🔬Research Focus:

Prof. Helin Niu specializes in the chemical preparation, performance evaluation, and application of novel photoelectric functional materials. His research is centered on developing high-performance composite devices for energy storage, flexible electronics, and environmental applications. A significant portion of his work involves the synthesis of metal-organic frameworks, supercapacitor electrode materials, and near-infrared-responsive nanocomposites. His contributions to food science include the detection of harmful pollutants using advanced materials. He also explores energy-efficient devices, such as carbon membrane-based sensors and flexible capacitors. His interdisciplinary approach combines fundamental chemistry with applied research, pushing the boundaries of material science. Through his funded projects, he has made significant advancements in metal-induced self-assembly techniques, electrochemical energy storage, and photonic materials, solidifying his reputation as a leader in inorganic chemistry and materials chemistry.

Publication Top Notes:

Fine-tuning the molecular conformation and packing structures of coumarin-based luminogens to achieve distinct piezochromic properties upon mechanical grinding and under hydrostatic pressures

Authors: S. Fu, H. Jia, X. Meng, J. Yang, H. Niu

Journal: Materials Horizons

Year: 2024

Citations: 1

A general metal acetate-assisted alcohol thermal strategy to fabricate flexible carbon nanofiber films for supercapacitors

Authors: W. Song, K. Wang, X. Lian, C. Xu, H. Niu

Journal: Inorganic Chemistry Frontiers

Year: 2024

Rational design of MXene/MWCNT/TOCNF film for flexible supercapacitor

Authors: J. Chen, M. Feng, X. Lian, K. Wang, H. Niu

Journal: Ceramics International

Year: 2024

Citations: 3

Controlling the Degree of Interpenetration in Chiral Three-Dimensional Covalent Organic Frameworks via Steric Tuning

Authors: K. Wang, B. Hou, J. Dong, Y. Liu, Y. Cui

Journal: Journal of the American Chemical Society

Year: 2024

Citations: 5

Non-preoxidation synthesis of MXene integrated flexible carbon film for supercapacitors

Authors: W. Song, K. Wang, X. Lian, F. Zheng, H. Niu

Journal: Chemical Engineering Journal

Year: 2024

Citations: 4

Sulfur-Doped CoNi Layered Double Hydroxide/Carbon Nanofiber Composite Films for Flexible Supercapacitors

Authors: W. Song, K. Wang, X. Lian, H. Niu

Journal: ACS Applied Nano Materials

Year: 2024

Citations: 3

Multicolor Fluorescent Inks Based on Lanthanide Hybrid Organogels for Anticounterfeiting and Logic Circuit Design

Authors: X. Lian, R. Chang, G. Huang, B. Yao, H. Niu

Journal: ACS Applied Materials and Interfaces

Year: 2024

Citations: 2

Highly Flexible Carbon Film Implanted with Single-Atomic Zn−N2_2 Moiety for Long-Life Sodium-Sulfur Batteries

Authors: G. Yao, Z. Li, Y. Zhang, Y. Yang, F. Zheng

Journal: Advanced Functional Materials

Year: 2024

Citations: 28

Ni3_3S4_4 combined hydrophilic hydroxylated MWCNTs for high-performance asymmetric supercapacitors

Authors: J. Zheng, H. Niu, J. Zhao, Z. Zhao, G. Li

Journal: Diamond and Related Materials

Year: 2023

Citations: 1

Highly Flexible K-Intercalated MnO2_2/Carbon Membrane for High-Performance Aqueous Zinc-Ion Battery Cathode

Authors: J. Yang, G. Yao, Z. Li, Q. Chen, F. Zheng

Journal: Small

Year: 2023

Citations: 60