Assoc. Prof. Dr. Ningbo Li | Medicinal Chemistry | Best Researcher Award

Assoc. Prof. Dr. Ningbo Li | Medicinal Chemistry | Best Researcher Award

Assoc. Prof. Dr. Ningbo Li , Medicinal Chemistry , Shanxi Medical University, China

Dr. Ningbo Li is an accomplished Associate Professor at the School of Basic Medical Sciences, Shanxi Medical University, with a strong academic foundation and a passion for cancer research. With a doctorate in Organic Chemistry from Hunan University, Dr. Li has built a reputable career in green synthesis, targeted nano-drug delivery systems, and near-infrared fluorescent probes molecule for cancer diagnostics and therapy. He has led over 10 national and provincial research projects, published 46 SCI-indexed papers, and holds 5 authorized patents. Dr. Li also contributes to academia through textbooks and serves as a Young Editorial Board Member of Journal of Xiangtan University. His collaborations span leading institutions like Hunan University and Nankai University. With 863 citations and rising influence, Dr. Li is committed to pioneering innovative, low-toxicity cancer therapeutics and translating lab findings into clinical advances.

Professional Profile : 

Orcid   

Scopus 

Summary of Suitability for Award:

Dr. Ningbo Li, Associate Professor at Shanxi Medical University, has demonstrated exceptional research productivity and innovation in the fields of organic chemistry, nanomedicine, and cancer therapeutics. With over 50 SCI-indexed publications, 5 authorized patents, and leadership on more than 10 national and provincial-level research projects, Dr. Li has made significant contributions to targeted cancer treatment and green synthesis of anti-tumor agents. His pioneering work on magnetic nano-drug delivery systems and near-infrared fluorescent probes molecule showcases translational potential for clinical applications in oncology. Furthermore, his involvement in academic book publications, editorial duties, and inter-institutional collaborations reflects both leadership and scholarly impact. With a citation index of 863 and consistent innovation through funded research, Dr. Li exemplifies the qualities of a top-tier researcher. Dr. Ningbo Li is highly suitable for the “Best Researcher Award”, as he meets and exceeds the criteria in terms of research excellence, innovation, scientific impact, and societal relevance. His dedication to advancing cancer research through interdisciplinary chemistry and his strong track record in publications, patents, and funded projects make him a deserving and outstanding candidate for this prestigious recognition

🎓Education:

Dr. Ningbo Li’s academic journey began with a Bachelor’s degree in Chemistry from Shanxi Datong University (2005–2009). He pursued his postgraduate studies at Hunan University, earning a Master’s degree (2009–2012) and subsequently a Ph.D. in Organic Chemistry (2012–2015). His academic training emphasized organometallic chemistry, chiral complex synthesis, and catalysis, laying the groundwork for his future research in drug development and nanomedicine. During his doctoral studies, Dr. Li specialized in chiral Lewis acids, exploring their role in asymmetric synthesis—an area critical to pharmaceutical innovation. His graduate work was pivotal in shaping his later focus on bio-compatible metal complexes and tumor-targeted drug delivery platforms. The integration of organic synthesis with biomedical applications became a hallmark of his educational path, culminating in a multidisciplinary approach that bridges chemistry, nanotechnology, and medical science.

🏢Work Experience:

Dr. Ningbo Li began his academic career as a Lecturer (2015–2018) at the School of Basic Medical Sciences, Shanxi Medical University, where he conducted interdisciplinary research and mentored students. In December 2018, he was promoted to Associate Professor, reflecting his growing contributions to research and teaching. With over a decade in academia, he has supervised numerous graduate projects and continues to develop innovative strategies for targeted cancer therapy using nanomaterials and fluorescent probes. Dr. Li has consistently received competitive research funding from the National Natural Science Foundation of China and the Shanxi Provincial Science Foundations. He also actively contributes to national teaching excellence through authorship in leading organic chemistry textbooks. His dedication to both scientific advancement and student development underscores a career that blends high-impact research with academic leadership in medical and chemical sciences.

🏅Awards: 

While specific named awards are not detailed, Dr. Ningbo Li’s academic honors are evident through his prestigious research grants, editorial board appointment, and book contributions. He is the Principal Investigator for multiple national-level research projects, including NSFC Young Scholar Awards, which are highly competitive and indicative of early-career excellence. His appointment as a Young Editorial Board Member of the Journal of Xiangtan University (Natural Science Edition) further reflects his scientific influence and peer recognition. Dr. Li’s patents on chiral zirconium and titanium complexes also highlight his innovative contributions to chemical synthesis. Moreover, his extensive publishing record and the high citation index (863) attest to the impact of his research in organic and medicinal chemistry. Through his involvement in writing authoritative textbooks used in higher education, Dr. Li has contributed significantly to the academic development of students and educators in China.

🔬Research Focus:

Dr. Ningbo Li’s research is centered on the interdisciplinary interface of organic chemistry, nanotechnology, and cancer therapeutics, with a strong emphasis on green and sustainable chemistry. His primary focus lies in the design and synthesis of functionalized magnetic nanocomposites and near-infrared fluorescent probe molecules for the precise diagnosis and targeted treatment of malignant tumors. By engineering magnetic-targeted nano-drug delivery systems, his team aims to achieve site-specific drug accumulation, minimizing systemic toxicity and enhancing therapeutic efficacy. Another key area involves the green synthesis of novel bioactive compounds, particularly chiral organometallic complexes, which exhibit promising anti-tumor properties. His group also explores chiral Lewis acids as catalysts in asymmetric reactions, crucial for the development of structurally complex pharmaceuticals. Dr. Li’s research is highly translational, striving to bridge the gap between bench and bedside by accelerating the clinical application of biocompatible, efficient, and low-toxicity cancer therapeutics rooted in advanced chemical innovation.

Publication Top Notes:

1. g-C₃N₄-Based Heterogeneous Photocatalyzed Synthesis and Evaluation of Antitumor Activities of Fluoroalkylated 4H-Pyrido[1,2-a]pyrimidin-4-ones

2. Magnetic Nanocarriers for pH/GSH/NIR Triple-Responsive Drug Release and Synergistic Therapy in Tumor Cells

3. GSH-Responsive Magnetic Mesoporous Silica Nanoparticles for Efficient Controlled Drug Delivery in Tumor Cells

 

Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Full Professor in Analytical Chemistry/Researcher/Lecturer at Shahid Chamran University of Ahvaz, Iran 

Prof. Behrooz Zargar is a distinguished Full Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, Iran, with over two decades of academic and research excellence. His expertise spans electrochemistry, nano-chemistry, solar cells, and environmental remediation. He has published over 60 high-impact research papers and actively collaborates with organizations such as ISO and the Iranian Safety and Environment Committee. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has played a pivotal role in advancing analytical techniques. His research has contributed significantly to pesticide analysis, mycotoxin detection, and nanomaterial-based pollutant degradation. His commitment to academia is reflected in his editorial appointments, research collaborations, and mentorship of numerous students. With an impressive citation index of 2143, Prof. Zargar’s groundbreaking work has influenced various industrial and environmental sectors, making him a leading figure in analytical and environmental chemistry.

Professional Profile :         

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Behrooz Zargar, a distinguished Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, has made remarkable contributions to analytical chemistry, particularly in nanotechnology, electrochemistry, and environmental chemistry. With over 60 publications in high-impact journals (SCI, Scopus indexed), a citation index of 2143, and extensive research in solar cells, solid-phase extraction, and photo-degradation, his scientific impact is substantial. His research collaborations, including work with ISO Organization and national standardization committees, demonstrate his leadership in applied scientific advancements. Additionally, his industry projects on food safety and environmental toxin analysis highlight his contributions to public health and sustainability. With a proven track record of pioneering research, industry collaborations, and leadership in analytical chemistry, Prof. Zargar stands as a highly deserving candidate for the “Best Researcher Award.” His groundbreaking research in nano-chemistry and solar cell technology continues to drive innovation, making him an excellent choice for this prestigious recognition.

🎓Education:

Prof. Behrooz Zargar holds a Ph.D. in Analytical Chemistry (2001) from Shahid Chamran University of Ahvaz. He earned his Master’s degree in Analytical Chemistry (1996) from the same institution, building a strong foundation in instrumental analysis and environmental monitoring. His Bachelor’s degree in Applied Chemistry (1992) from Isfahan University of Technology laid the groundwork for his interest in chemical applications for industrial and environmental solutions. Prior to university education, he completed a Diploma in Experimental Sciences, fostering his analytical skills early on. His academic journey reflects a commitment to precision, innovation, and interdisciplinary research. Over the years, he has integrated electrochemical, spectroscopic, and chromatographic techniques into his research, making significant contributions to chemical science. His education has been instrumental in shaping his expertise in nano-chemistry, separation sciences, and environmental remediation, areas where he continues to make impactful discoveries.

🏢Work Experience:

Prof. Zargar’s academic career spans over two decades at Shahid Chamran University of Ahvaz, where he has held various positions. He served as an Assistant Professor (2002-2009), progressing to Associate Professor (2009-2017), and was promoted to Full Professor in 2017. With a Grade 32 ranking, he has contributed extensively to teaching, research, and institutional leadership. He has collaborated with ISO, developed national safety and environmental standards, and played a key role in nanotechnology advancements. His consultancy work has influenced industries by assessing toxic residues in food, environmental contaminants, and industrial pollutants. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has enhanced research infrastructure, fostering innovation. His experience extends to mentoring Ph.D. and Master’s students, shaping the next generation of chemists. His expertise in solar cells, electroless plating, corrosion, and electrochemical preconcentration has made him a respected figure in analytical and industrial chemistry.

🏅Awards: 

Prof. Behrooz Zargar’s contributions to analytical chemistry and environmental sciences have earned him numerous accolades. He was recognized for 10 years of excellent service to ISO/TC 17/SC 1/ WG 74 in 2025 for his contributions to steel chemical composition analysis. His work in nanotechnology and environmental monitoring has been acknowledged by national and international scientific committees. As a key member of the Iranian Safety and Environment Committee, he has shaped national policies on chemical safety and environmental sustainability. His editorial appointments in high-impact journals further highlight his scholarly influence. His innovative work in photo-degradation, nano-based solid-phase extraction, and pesticide residue analysis has led to several research grants and industrial collaborations. His role in the development of national analytical standards in Khuzestan, Iran, reflects his commitment to advancing chemical safety regulations. Prof. Zargar’s outstanding research contributions and institutional leadership make him a highly esteemed scientist.

🔬Research Focus:

Prof. Zargar’s research spans analytical, environmental, and industrial chemistry, with a strong emphasis on nanotechnology applications. His work in electrochemical preconcentration and separation techniques has improved trace-level detection of contaminants in food and water. His nano-chemistry expertise has advanced solar cell technology, particularly FeS₂/TiO₂-based solar cells. He has pioneered printed-based voltammetric selective electrodes for precise electrochemical analysis. His work in photo-degradation of cyanide ions using nanomaterials has significant environmental implications. He has developed aerogel-based solid-phase extraction methods for efficient pollutant removal. His industrial research includes toxic residue detection in grains, milk, and bread. His collaboration with ISO and the Iranian Nanotechnology Committee has led to the establishment of new safety and environmental guidelines. His research continues to bridge analytical chemistry with environmental sustainability, contributing to the development of safer chemical practices and advanced material applications.

Publication Top Notes:

A nano curcumin–multi-walled carbon nanotube composite as a fluorescence chemosensor for trace determination of celecoxib in serum samples

An effervescence-assisted dispersive liquid–liquid micro-extraction of captopril based on hydrophobic deep eutectic solvent

Citations: 8

Determination of Tetracycline Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Followed by HPLC–UV System​​

Over-oxidized carbon paste electrode modified with pretreated carbon nanofiber for the simultaneous detection of epinephrine and uric acid in the presence of ascorbic acid​​

Dendrimer-modified magnetic nanoparticles as a sorbent in dispersive micro-solid phase extraction for preconcentration of metribuzin in a water sample​​

Synthesis and dye adsorption studies of the {dibromo(1,1′-(1,2-ethanediyl)bis(3-methyl-imidazole-2-thione)dicopper(i)}n polymer and its conversion to CuO nanospheres for photocatalytic and antibacterial applications​​

Adsorption and removal of ametryn using graphene oxide nano-sheets from farm waste water and optimization using response surface methodology​​

Application of vortex-assisted solid-phase extraction for the simultaneous preconcentration of Cd(ii) and Pb(ii) by nano clinoptilolite modified with 5(p-dimethylaminobenzylidene) rhodanine​​

Metal oxide/TiO₂ nanocomposites as efficient adsorbents for relatively high temperature H₂S removal​​

Novel magnetic hollow zein nanoparticles for preconcentration of chlorpyrifos from water and soil samples prior to analysis via high-performance liquid chromatography (HPLC)

**Synthesis of an ion-imprinted sorbent by surface imprinting of magnetized carbon nanotubes for determination