Dr. PRANABA Nayak | Analytical Chemistry | Best Researcher Award

Dr. PRANABA Nayak | Analytical Chemistry | Best Researcher Award

Dr. PRANABA Nayak , Analytical Chemistry ,  Scientific Officer at Tata Institute of Fundamental Research, India

Dr. Pranaba K. Nayak is a Scientific Officer at the Tata Institute of Fundamental Research (TIFR), Mumbai, with over two decades of experience in nuclear and analytical chemistry, and astroparticle physics. He earned his Ph.D. from Utkal University in 2003, later serving at Kalasalingam University before joining TIFR in 2005 as a Senior Postdoctoral Fellow in the GRAPES-3 cosmic-ray experiment. His interdisciplinary research has led to over 75 peer-reviewed publications and significant discoveries, including gamma-ray flux shifts during solar eclipses and thunderstorm-related phenomena. He collaborates with 30+ national and international institutes and serves on editorial and scientific committees globally. An active mentor and scholar, Dr. Nayak has contributed to more than 50 book chapters and reviewed over 75 manuscripts. His work has been recognized for its impact on solar physics, atmospheric science, and nuclear astrophysics.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Pranaba K. Nayak is a highly accomplished researcher whose career spans over two decades of impactful work in astro particle physics, nuclear chemistry, and analytical techniques. His contributions to the internationally recognized GRAPES-3 cosmic-ray experiment at TIFR have led to several groundbreaking discoveries, such as the variation in cosmic gamma-ray flux during solar eclipses and record-setting atmospheric potential measurements. With 75+ peer-reviewed publications, 50+ book chapters, and extensive international collaborations with over 30 institutes worldwide, he has consistently demonstrated research excellence, innovation, and leadership. His h-index of 20 and i10-index of 28 reflect the scientific community’s recognition of his work. In addition, Dr. Nayak has actively mentored young scientists and contributed as a reviewer and editorial board member, strengthening scientific discourse in his field. Dr. Pranaba K. Nayak is eminently suitable for the “Best Researcher Award”. His sustained research output, pioneering discoveries, interdisciplinary reach, and international collaborations make him a deserving candidate whose contributions have significantly advanced both theoretical and applied aspects of high-energy physics and analytical sciences.

🎓Education:

Dr. Nayak holds a Ph.D. in Experimental Nuclear and Analytical Chemistry from Utkal University (2003). His doctoral research, guided by mentors from Anna University, Chennai, spanned nuclear, analytical, and solid-state chemistry. This strong academic foundation laid the groundwork for his transition into astroparticle physics and cosmic-ray studies. Prior to his Ph.D., he pursued postgraduate and undergraduate studies in chemistry, with a focus on nuclear instrumentation and environmental radiochemistry. His educational path blended theoretical insight with hands-on experimentation, equipping him with the tools necessary for high-impact interdisciplinary research. His continuing engagement with educational institutions, including mentoring young researchers and Ph.D. scholars, exemplifies his commitment to fostering scientific excellence. He frequently delivers lectures and training modules in cosmic ray physics and analytical techniques, contributing to capacity-building in India and abroad.

🏢Work Experience:

Dr. Pranaba K. Nayak began his professional journey as a faculty member at Kalasalingam University, focusing on nuclear and analytical chemistry. In 2005, he joined TIFR’s High Energy Physics Department as a Senior Postdoctoral Fellow and has since become a Scientific Officer, contributing extensively to the GRAPES-3 cosmic-ray experiment at Ooty. His work spans gamma-ray burst detection, cosmic-ray modulation, environmental radioactivity, and atmospheric physics. He has developed novel spectral analysis techniques and coordinated large-scale collaborations with over 30 institutions globally, including IITs, SINP, and partners in Japan, Europe, and Saudi Arabia. His interdisciplinary projects have addressed thunderstorm-related high-energy events and geomagnetic field studies. He also mentors students, reviews scientific manuscripts, and contributes to international committees. His role in advancing experimental techniques and fostering global scientific partnerships has made him a respected figure in high-energy astrophysics and nuclear research communities.

🏅Awards: 

Dr. Nayak has received widespread recognition for his pioneering work in cosmic-ray physics and analytical chemistry. His discovery of gamma-ray flux shifts during the 2009 total solar eclipse gained international acclaim and highlighted his ability to integrate astrophysics with atmospheric science. He has been an invited reviewer for over 75 manuscripts, primarily for the journal Talanta, showcasing his expertise in analytical chemistry. His scientific excellence earned him a position on the Scientific Committee of the Annual International Congress on Nanoscience & Nanotechnology (2025, Oxford, UK). He is also a life member of prestigious scientific organizations, including the Indian Society for Atomic & Molecular Physics, Indian Physics Association, Indian Association for Nuclear Chemist & Allied Sciences, and Indian Society for Technical Education. These accolades affirm his leadership and innovation in research, education, and scientific outreach.

🔬Research Focus:

Dr. Pranaba K. Nayak’s research centers on the intersection of experimental nuclear chemistry, analytical techniques, and astroparticle physics. At the heart of his work lies the GRAPES-3 cosmic-ray experiment, where he investigates high-energy phenomena such as cosmic-ray modulation, gamma-ray flux variations, and muon bursts during thunderstorms and solar eclipses. His contributions have led to significant insights into solar-terrestrial interactions, atmospheric electricity, and transient geomagnetic events. He has also developed novel analytical methods for monitoring environmental radioactivity, integrating advanced spectrometry with field-based cosmic-ray detection systems. His research uniquely bridges space physics with earth-based observations, advancing our understanding of cosmic particle behavior under extreme atmospheric conditions. Through collaborations with over 30 national and international institutions, Dr. Nayak continues to lead interdisciplinary studies that link nuclear processes with astrophysical and atmospheric phenomena, thereby contributing to global efforts in understanding high-energy cosmic environments and their terrestrial effects.

Publication Top Notes:

Title: Synthesis and characterization of cadmium ferrite
Citations: 76

Title: Forbush decreases and turbulence levels at coronal mass ejection fronts
Citations: 65

Title: Measurement of the Electrical Properties of a Thundercloud Through Muon Imaging by the GRAPES-3 Experiment
Citations: 51

Title: Energy dispersive X-ray fluorescence analysis of gallstones
Citations: 46

Title: Measurement of some EAS properties using new scintillator detectors developed for the GRAPES-3 experiment
Citations: 42

Title: PIXE & XRD analysis of nanocrystals of Fe, Ni and Fe₂O₃
Citations: 35

Title: External particle-induced X-ray emission
Citations: 35

Title: Elemental analysis of anti-diabetic medicinal plants using energy dispersive X-ray fluorescence technique
Citations: 34

Title: 57Fe Mössbauer and EDXRF studies on three representative banded iron formations (BIFs) of Orissa, India
Citations: 32

Title: A study of the γ-ray flux during the total solar eclipse of 1 August 2008 at Novosibirsk, Russia
Citations: 28

Title: Fast Fourier transform to measure pressure coefficient of muons in the GRAPES-3 experiment
Citations: 27

Ms. NTUMBA LOBO | Physical Chemistry | Best Researcher Award

Ms. NTUMBA LOBO | Physical Chemistry | Best Researcher Award

Ms. NTUMBA LOBO | Physical Chemistry | PhD student at NAGOYA INSTITUTE OF TECHNOLOGY, Japan

Ntumba Lobo, a Congolese researcher, is a Ph.D. student and research assistant at Nagoya Institute of Technology, Japan. She specializes in semiconductor materials, focusing on carrier recombination effects in perovskites. She holds a Master’s degree from Shibaura Institute of Technology, Japan, in hydrogen storage materials, and an M.Sc. in Nuclear Physics from Addis Ababa University, Ethiopia. With experience in international collaborations, she was an exchange researcher at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. Ntumba has participated in several scientific conferences and published extensively in high-impact journals. She has also held teaching and research positions, including at the University of Kinshasa and the Centre Régional de Recherche Nucléaire de Kinshasa. Her work contributes significantly to materials science and renewable energy applications.

Professional Profile :         

Google Scholar

Orcid

Scopus  

Summary of Suitability for Award:

Ntumba Lobo is an exceptional researcher with a strong multidisciplinary background in semiconductor materials, energy storage, and nuclear physics. Her Ph.D. research at Nagoya Institute of Technology, Japan, focuses on metal halide perovskites, lithium tantalate, and carrier dynamics, contributing significantly to the development of advanced semiconductor materials. She has demonstrated excellence in research through multiple international collaborations, including an exchange program at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. Her expertise in material characterization techniques such as Time-Resolved Photoluminescence (TRPL), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) has led to high-impact publications and conference presentations. Ntumba Lobo’s extensive research contributions, global collaborations, and expertise in semiconductor and energy materials make her a strong candidate for the “Best Researcher Award.” Her work is not only innovative but also has a significant impact on the future of optoelectronic devices and sustainable energy solutions. Her dedication to scientific excellence, combined with her ability to work across disciplines, positions her as a deserving recipient of this prestigious recognition.

🎓Education:

Ntumba Lobo is currently pursuing a Ph.D. in Science and Engineering at Nagoya Institute of Technology, Japan, specializing in semiconductor materials (expected completion in September 2025). She was an exchange student at i-MEET, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, in 2022, where she worked on single and polycrystal semiconductor materials. She obtained a Master’s degree in Science and Engineering from Shibaura Institute of Technology, Japan (2018-2020), focusing on energy storage materials. Before that, she completed an M.Sc. in Nuclear Physics from Addis Ababa University, Ethiopia (2014-2016), with a dissertation on nuclear fusion reactions. Her academic journey began with a B.Sc. (Honors) in Physics from the University of Kinshasa, Democratic Republic of the Congo (2012), where she contributed to non-destructive characterization of reinforced concrete using ultrasound methods. Her diverse educational background in physics, material science, and engineering has equipped her with expertise in semiconductor research and energy materials.

🏢Work Experience:

Ntumba Lobo has extensive experience in research and teaching. Since 2020, she has been a Research Assistant at Nagoya Institute of Technology, working on semiconductor materials and device characterization. She has completed multiple internships, including at OSM Group Co., Ltd. (Japan, 2019) and For Delight Co. Ltd. (Japan, 2018), where she gained industry exposure. Her research career started with an internship at the Centre Régional de Recherche Nucléaire de Kinshasa (2016-2017) in nuclear physics. She also worked as a Teaching Assistant at the University of Kinshasa (2013-2014) and taught physics, scientific drawing, and technology at Liziba High School (2012-2013). Her hands-on expertise in material characterization techniques, including Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and photoconductivity measurements, has contributed to multiple high-impact publications. Her professional experience spans academic, industrial, and research institutions, making her a well-rounded scientist in semiconductor and energy materials.

🏅Awards: 

Ntumba Lobo has been recognized for her contributions to material science and semiconductor research. She received funding for an exchange research program at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany (2022), where she worked on advanced semiconductor materials. Her research on energy storage materials during her Master’s at Shibaura Institute of Technology was highly appreciated. She has presented her work at prestigious conferences, including the 16th International Symposium on Metal-Hydrogen Systems (China, 2018) and the Solid-State Devices and Materials Conference (Japan, 2023). She also participated in specialized training programs such as the Summer School on Space Weather in Kinshasa (2011) and Advanced Python Programming and Geographic Information Systems training in Addis Ababa (2016). Her continuous engagement in international research collaborations and conferences showcases her commitment to scientific advancement.

🔬Research Focus:

Ntumba Lobo’s research focuses on semiconductor materials, particularly metal halide perovskites and their carrier dynamics. She investigates surface recombination, carrier lifetime, and trapping effects in single and polycrystalline materials using techniques like Microwave Photoconductivity Decay (µPCD) and Time-Resolved Photoluminescence (TRPL). Her work extends to lithium tantalate and its photoconductance properties. She has also contributed to the field of hydrogen storage materials, analyzing the effects of TiO₂, Nb₂O₅, and TiH₂ catalysts on magnesium hydride. Additionally, her expertise in nuclear physics has allowed her to explore neutron-induced reactions and fusion mechanisms. By integrating her knowledge in physics, materials science, and engineering, she aims to develop efficient, stable, and high-performance materials for energy storage and semiconductor applications. Her research is pivotal in advancing next-generation optoelectronic devices and sustainable energy solutions.

Publication Top Notes:

Stability investigation of the γ-MgH₂ phase synthesized by high-energy ball milling

Citations: 27

Stable quasi-solid-state zinc-ion battery based on the hydrated vanadium oxide cathode and polyacrylamide-organohydrogel electrolyte

Citations: 13

Trapping effects and surface/interface recombination of carrier recombination in single- or poly-crystalline metal halide perovskites

Citations: 9

Study of ²⁰Ne Induced Reaction in ⁵⁹Co: Incomplete and Complete Fusion

Citations: 3

Effect of TiO₂ + Nb₂O₅ + TiH₂ Catalysts on Hydrogen Storage Properties of Magnesium Hydride

Citations: 2

La Super Symétrie en Physique Quantique

Citations: 1

Mitigation of carrier trapping effects on carrier lifetime measurements with continuous-wave laser illumination for Pb-based metal halide perovskite materials

Transport and business improvement in the province of South-Ubangi (Democratic Republic of the Congo)

 

Dr. Jean Moto Ongagna | Theoretical Chemistry | Catalysis Award

Dr. Jean Moto Ongagna | Theoretical Chemistry | Catalysis Award

Dr. Jean Moto Ongagna | Theoretical Chemistry | Lecturer – University of Douala-Cameroon , Cameroon

Dr. Jean Moto Ongagna is a Cameroonian researcher specializing in Theoretical chemistry and Computational Chemistry . He obtained his Ph.D. from the University of Douala in 2021. His expertise spans Density Functional Theory (DFT), Pharmacokinetics (ADMET), Molecular Docking, Molecular Dynamics (MD), and ab initio Molecular Dynamics (ADMP). Dr. Ongagna has contributed significantly to computational chemistry, particularly in studying metal complexes, chemical bonding, and reaction mechanisms. He has participated in prestigious international conferences and workshops, presenting groundbreaking research on chemical bonding interactions. With numerous publications in high-impact journals such as RSC Advances and the International Journal of Quantum Chemistry, his work advances the understanding of transition metal complexes and their applications. He actively collaborates with researchers worldwide and is dedicated to developing computational tools for chemical and biological systems.

Professional Profile : 

Orcid  

Summary of Suitability for Award:

Dr. Jean Moto Ongagna is an outstanding candidate for the “Catalysis Awards”, given his significant contributions to computational catalysis and theoretical chemistry. His research extensively applies Density Functional Theory (DFT), Quantum Chemical Calculations, and Molecular Dynamics (MD) to investigate transition metal complexes, non-standard chemical bonding, and catalytic reaction mechanisms. His studies provide deep insights into metal-ligand interactions, catalytic efficiency, and reaction pathways, which are fundamental for designing novel catalytic systems. Dr. Jean Moto Ongagna’s research in computational catalysis, transition metal chemistry, and theoretical modeling aligns perfectly with the objectives of the “Catalysis Awards”. His work advances the understanding of catalyst behavior, reaction mechanisms, and molecular interactions, making a substantial impact on modern catalysis research. His ability to integrate quantum chemistry tools with catalytic design positions him as a highly suitable candidate for this prestigious recognition.

🎓Education:

Dr. Jean Moto Ongagna pursued his higher education at the University of Douala, Cameroon. He earned a Ph.D. in Theoretical and Computational Chemistry (2021), focusing on Density Functional Theory (DFT) and molecular simulations. In 2016, he completed his Master’s degree in the same field, where he explored the computational analysis of metal-ligand interactions. His Bachelor’s degree in Physical Chemistry (2013) laid the foundation for his research on quantum chemistry and molecular modeling. Before university, he completed his GCE Advanced Level (Baccalauréat D) in 2008 at Laic Private College “La Liberté” in Douala. His education equipped him with expertise in quantum chemistry, molecular docking, and theoretical modeling, enabling him to contribute to cutting-edge research. Throughout his academic journey, he attended specialized workshops and conferences to enhance his skills in computational chemistry, continuously refining his expertise in quantum simulations and advanced chemical theories.

🏢Work Experience:

Dr. Jean Moto Ongagna has extensive experience in Theoretical chemistry and Computational Chemistry, with expertise in Density Functional Theory (DFT), Molecular Docking, Pharmacokinetics (ADMET), and ab initio Molecular Dynamics (ADMP). He has actively participated in international conferences, presenting research on transition metal complexes, chemical bonding, and molecular interactions. He has contributed to significant projects involving the computational study of catalysts, biomolecular interactions, and pharmaceutical compounds. Dr. Ongagna has also collaborated with renowned institutions and researchers worldwide, publishing extensively in high-impact journals. His research experience includes developing and applying quantum chemical tools for investigating metal-ligand interactions and reaction mechanisms. He has been involved in multiple computational chemistry workshops, enhancing his knowledge of secondary metabolite discovery, quantum topology, and electronic structure theory. His contributions have led to a deeper understanding of non-standard chemical bonding and have implications for catalysis, drug design, and materials science.

🏅Awards: 

Dr. Jean Moto Ongagna has received multiple recognitions for his contributions to Theoretical and Computational Chemistry. He has been invited as a speaker at international conferences, including the 4th Commonwealth Chemistry Posters (2023) and the Virtual Conference on Chemistry and Its Applications (2021, 2022). His research on transition metal complexes and quantum chemistry has been published in high-impact journals such as RSC Advances and the International Journal of Quantum Chemistry. He has received accolades for his computational investigations on catalytic and biomolecular systems, contributing to the advancement of quantum chemical methodologies. His participation in scientific workshops at the University of Buea (Cameroon) and Technische Universität Dresden (Germany) further highlights his academic excellence. His continuous engagement in international scientific discussions and collaborations has strengthened his reputation as a leading researcher in quantum chemistry and molecular modeling.

🔬Research Focus:

Dr. Jean Moto Ongagna’s research focuses on Theoretical and Computational Chemistry, particularly Density Functional Theory (DFT), Quantum Chemical Calculations, Molecular Docking, Pharmacokinetics (ADMET), and Molecular Dynamics (MD). He specializes in studying transition metal complexes, non-standard chemical bonds, and catalytic reactions. His work involves topological analysis of chemical interactions using advanced computational techniques such as Quantum Theory of Atoms in Molecules (QTAIM), Energy Decomposition Analysis (EDA), and Natural Bond Orbital (NBO) analysis. He has made significant contributions to understanding palladium complexes, Diels–Alder reactions, and bioactive compounds. His research extends to computational drug discovery, antimicrobial compounds, and bioinorganic chemistry, aiming to bridge the gap between theoretical modeling and experimental applications. By integrating quantum chemical methods with molecular simulations, his studies provide valuable insights into reaction mechanisms, electronic structures, and potential applications in pharmaceuticals, catalysis, and material science.

Publication Top Notes:

Deciphering the Influence of Alkylene Bridged and Chelating Mode on Pd—C and Pd—X (X = Cl, Br, and I) Bonding Interaction Within Bis‐(NHC)‐Palladium Complexes Using Quantum Chemistry Tools

Authors: Gaël Mouzong D’Ambassa, Jean Moto Ongagna, Adjieufack Abel Idrice, Désiré Bikele Mama

Year: 2024

Computational Exploration of the Impact of Low‐Spin and High‐Spin Ground State on the Chelating Ability of Dimethylglyoxime Ligand on Dihalo Transition Metal: A QTAIM, EDA, and CDA Analysis

Authors: Daniel Lissouck, Suzane Leonie Djendo Mazia, Gaël Mouzong D’Ambassa, Jean Moto Ongagna

Year: 2024

Deciphering the Influence of PdII and PdIV Oxidation States on Non-Standard Chemical Bonds Within Bis(N-Heterocyclic Carbene) Complexes: Insights from DFT

Authors: Gaël Mouzong D’Ambassa, Jean Moto Ongagna, Adjieufack Abel Idrice, Désiré Bikele Mama

Year: 2024

Exploring the Mechanism of the Intramolecular Diels–Alder Reaction of (2E,4Z,6Z)-2(allyloxy)cycloocta-2,4,6-trien-1-one Using Bonding Evolution Theory

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2023

In Vitro and In Silico Studies of Antibacterial Activities of Secofriedelane Derivatives from Senna alata (L) Roxb

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2023

How a Chromium Tricarbonyl Complex Catalyzes the [3 + 2] Cycloaddition Reaction of N-Substituted Phenylnitrones with Styrene: A Molecular Electron Density Theory Analysis

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2023

Insight into the Antioxidant and Antiradical Properties of Colorotane Sesquiterpenes Extracted from Warburgia ugandensis: Theoretical Evaluation

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2021

Topological Unraveling of the [3+2] Cycloaddition (32CA) Reaction Between N-Methylphenylnitrone and Styrene Catalyzed by the Chromium Tricarbonyl Complex Using Electron Localization Function and Catastrophe Theory

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2021

B3LYP, M06 and B3PW91 DFT Assignment of nd8 Metal-Bis-(N-Heterocyclic Carbene) Complexes

Authors: Jean Moto Ongagna, Gaël Mouzong D’Ambassa

Year: 2020