Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki | Environmental Chemistry | Best Researcher Award

Dr. Karim Al Souki , Environmental Chemistry , Jan Evangelista Purkyne University , Czech Republic

Dr. Karim Al Souki is a postdoctoral researcher and assistant professor at the Faculty of Environment, Jan Evangelista Purkyne University (UJEP), Czechia. With a Ph.D. in Earth and Universe Sciences from Lille 1 University, France, his academic journey reflects a strong foundation in plant biology and environmental sciences. Dr. Al Souki’s research spans phytoremediation, bioremediation, biochar utilization, and climate change mitigation through sustainable phytotechnology. He is a key contributor to international projects funded by NATO, Erasmus+, and Interreg, focusing on ecosystem restoration, water management, and environmental biotechnology. As an educator, he has taught courses across Europe on subjects such as environmental biotechnology, phytotechnology, and bio-economy. Dr. Al Souki’s interdisciplinary approach blends ecological theory with applied environmental solutions, making significant contributions to marginal land restoration and water pollution mitigation. His work promotes sustainability, ecological awareness, and environmental resilience through innovation and education.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

With a Ph.D. in Earth and Universe Sciences from Lille 1 University (France), and two Master’s degrees in Phyto-ecology and Plant Biology from Lebanese University, Dr. Karim Al Souki demonstrates a solid and multidisciplinary academic foundation. Dr. Karim Al Souki  leads and contributes to cutting-edge projects on phytoremediation, biochar technology, and environmental biotechnology—directly addressing climate change, pollution mitigation, and sustainable soil management. His research covers analytical techniques (FTIR, TGA, stable isotopes, DNA extraction), linking practical fieldwork with lab-based precision, ensuring both academic rigor and societal relevance. His role as project supervisor in initiatives like IDEAL and NATO-SPS illustrates leadership in shaping future environmental policies and technologies. Dr. Karim Al Souki is an ideal candidate for the “Best Researcher Award”, given his consistent, interdisciplinary contributions to environmental sciences. His research directly supports global sustainability goals through practical, innovative, and scalable solutions. Furthermore, his educational outreach, cross-border collaborations, and commitment to solving real-world ecological problems distinguish him as a researcher of international repute. This award would recognize and further empower his impactful scientific journey.

🎓Education:

Dr. Al Souki pursued his academic studies in biology and environmental sciences. He earned his Bachelor’s degree in General Biology (2008–2010), followed by a Master 1 in Plant Biology and Environment (2010–2011), and a Master 2 in Phyto-ecology, Resources, and Security Applications (2011–2012), all from Lebanese University, Lebanon. He then completed his Ph.D. in Earth and Universe Sciences at LGCgE, ISA-Lille, Lille 1 University of Sciences and Technologies, France (2014–2017). His academic foundation combines ecological sciences, environmental applications, and molecular understanding of plant-soil interactions. This educational pathway equipped him with the necessary tools to integrate ecological theory with practical environmental solutions. His training in Europe and the Middle East enabled him to adopt a multidisciplinary perspective and work in cross-cultural academic and research environments. His education has laid the groundwork for his specialization in environmental biotechnology, phytoremediation, and biochar applications.

🏢Work Experience:

Since October 2018, Dr. Karim Al Souki has been serving as a Post-doctoral researcher and Assistant Professor at UJEP, Czechia, where he teaches and conducts advanced research in environmental sciences. His prior experience includes teaching roles at ESME Sudria (France) and private institutions in Lille, where he lectured in phytoecology, molecular biology, and environmental science. He has supervised and contributed to numerous EU- and NATO-funded projects related to phytotechnology, biochar, soil-plant interactions, and wastewater treatment. His pedagogical contributions span multiple European universities and platforms, such as Erasmus, COIL, and ISA-Lille. He has taught subjects including Bioremediation, Bio-economy, Environmental Biotechnology, and Climate Change. Dr. Al Souki’s interdisciplinary teaching and research experience enable him to link theoretical knowledge with field-based applications, fostering student engagement and scientific problem-solving skills relevant to contemporary ecological challenges.

🏅Awards: 

Dr. Karim Al Souki has been recognized for his impactful research and cross-border educational initiatives. He is the Principal Investigator or Supervisor on several prestigious projects funded by international agencies such as NATO Science for Peace and Security Programme, Interreg (IDEAL project), and Erasmus+, highlighting his leadership in environmental science and sustainability education. He received the UJEP Internal Grant Agency funding multiple times (2021–2023), supporting his innovative work on biochar and Miscanthus x giganteus in soil restoration. He was awarded the Usti nad Labem region grant for young researchers for his study on quinoa in polluted soils. His consistent success in securing competitive research grants attests to the scientific merit and societal relevance of his projects. These accolades recognize his commitment to ecosystem services, educational outreach, and environmental restoration, and affirm his role as a rising figure in applied environmental sciences and international academic collaboration.

🔬Research Focus:

Dr. Al Souki’s research centers on phytotechnology, bioremediation, biochar characterization, and ecosystem service enhancement in marginal and contaminated soils. He specializes in using Miscanthus x giganteus and quinoa to rehabilitate former military lands and toxic-element-polluted environments. His research integrates stable isotope analysis, DNA-based microbial community profiling, and plant physiological assessments to explore rhizospheric interactions, nutrient cycling, and carbon sequestration. His work on biochar, especially its physico-chemical and ecotoxicological properties, supports sustainable agricultural and water reuse practices. His active projects include NATO-funded studies on climate change mitigation and EU-supported educational modules for water sustainability in the Elbe/Labe basin. His interdisciplinary approach links environmental microbiology, plant ecophysiology, and green chemistry, targeting real-world environmental problems with practical, nature-based solutions. His goal is to bridge science and education to improve soil health, water quality, and resilience against climate change.

Publication Top Notes:

1. An overview of potentially toxic element pollution in soil around lead–zinc mining areas

2. A comprehensive evaluation of the environmental and health risks associated with the potential utilization of chars produced from tires, electro-waste plastics and biomass

3. Characterizations of ash derived from the crops’ waste biomass for soil improvement and assisted phytoremediation

4. A 6-year review status on soil pollution in coal mining areas from Europe

5. Extracted rapeseed meal biochar combined with digestate as a soil amendment: Effect on lettuce (Lactuca sativa L.) biomass yield and concentration of bioavailable element fraction in the soil

6. Miscanthus x giganteus stress tolerance and phytoremediation capacities in highly diesel contaminated soils

7. The influence of diesel contaminated soil on Miscanthus x giganteus biomass thermal utilization and pyrolysis products composition

8. Evaluation of Miscanthus × giganteus Tolerance to Trace Element Stress: Field Experiment with Soils Possessing Gradient Cd, Pb, and Zn Concentrations

9. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate

10. Utilization of Biochar for Eliminating Residual Pharmaceuticals from Wastewater Used in Agricultural Irrigation: Application to Ryegrass

 

 

 

 

Ruwini Rajapaksha | Molecular Biology | Best Researcher Award

Dr. Ruwini Rajapaksha | Molecular Biology | Best Researcher Award

Doctorate at Lovelace Respiratory Research Institute – Albuquerque, NM, United States

Ruwini Rajapaksha, PhD, PMP, is a highly skilled Research & Development Scientist with over five years of experience in both academic and industrial settings. Currently a Postdoctoral Fellow at the Lovelace Biomedical Research Institute, Ruwini specializes in innovative research using cutting-edge spectroscopy techniques. Her expertise encompasses project management, research development, and quality control, which she has demonstrated through successful projects and significant contributions to the scientific community. Ruwini is known for her quick adaptability to new technologies and her commitment to achieving exceptional research outcomes.

Author Metrics

Google Scholar Profile

Scopus Profile

Ruwini Rajapaksha has a notable publication record with several impactful papers in peer-reviewed journals and contributions to conference proceedings. Her work has significantly advanced the understanding of spectroscopy techniques and their applications in various fields, including environmental science and chemistry. The author metrics highlight her influence in the field through citations, h-index, and contributions to high-impact journals, reflecting her standing as a reputable researcher in her domain.

Citations: Ruwini has garnered a total of 118 citations across her publications, with 116 citations from her most notable works. This indicates significant engagement and recognition of her research by the scientific community.

h-index: She has an h-index of 4, which signifies that at least 4 of her publications have each been cited at least 4 times. This metric reflects the productivity and citation impact of her research.

i10-index: Ruwini’s i10-index stands at 4, meaning she has at least 4 publications that have been cited 10 or more times each. This index provides insight into the number of her works that have achieved substantial citation impact.

Education

Ruwini holds a PhD in Chemistry from the New Mexico Institute of Mining and Technology, completed in May 2019. Prior to that, she earned a Bachelor of Science Special Degree in Chemistry (Honors) from the University of Ruhuna, Sri Lanka, in November 2012. Her educational background provides a solid foundation in both theoretical and practical aspects of chemistry, supporting her advanced research and development skills.

Research Focus

Ruwini’s research focus is primarily on advanced spectroscopy techniques, including cavity ring-down spectroscopy and ultrafast laser systems. Her work involves developing innovative solutions for environmental monitoring, such as detecting trace hazardous vapors and airborne pollutants. She also explores the application of these techniques in new areas, such as personal health diagnostics and material sciences, contributing to both fundamental knowledge and practical applications.

Professional Journey

Ruwini’s professional journey spans various roles, from her early career as a Laboratory Manager at the University of Ruhuna to her current position as a Postdoctoral Fellow. She has held significant roles at RingIR Inc., where she led and managed research projects, developed prototypes, and contributed to patent applications. Her experience includes teaching, mentoring, and managing quality control processes, showcasing her versatile skills and leadership in scientific research.

Honors & Awards

Ruwini has been recognized for her exceptional contributions to research and teaching. She received the Excellence in Graduate Research Award from New Mexico Tech in 2019 and the Outstanding Graduate Teaching Award in 2016. Additionally, she was awarded a travel grant to the Gordon Research Conference in 2018. These honors underscore her commitment to excellence in both research and education.

Publications Noted & Contributions

Ruwini has authored several influential publications, including papers on the use of cavity ring-down spectroscopy for environmental monitoring and the study of photophysical properties of various compounds. Her contributions have been featured in high-impact journals such as Environmental Science & Technology and Journal of Environmental Sciences. These publications reflect her expertise in applying advanced techniques to solve real-world problems and advance scientific knowledge.

Comparison of Respirable Coal and Silica Dust Monitoring Systems for Underground Mining Applications
Authors: A Medina, A Vanegas, E Madureira, P Roghanchi, R Rajapaksha, …
Journal: Underground Ventilation
Pages: 305-312
Year: 2023
Summary: This publication provides an in-depth analysis of various systems used to monitor respirable coal and silica dust in underground mining environments. It compares the effectiveness, accuracy, and practical applications of different dust monitoring technologies.

Development of Non-Regulatory Runtime Respirable Coal and Silica Dust Monitor
Authors: CC Harb, RD Rajapaksha, X Moya, J Roberts, P Hemp, L Uecker, …
Journal: Mine Ventilation
Pages: 242-247
Year: 2021
Summary: This paper discusses the development of an advanced respirable coal and silica dust monitor that operates outside of regulatory frameworks. The device is designed to enhance real-time monitoring capabilities and improve safety in mining operations.

Patents

Vacuum Airflow Filtering for Biological Sensing
Inventors: CC Harb, RD Rajapaksha, JM Roberts
Patent Number: US 11,630,056
Year: 2023
Summary: This patent details a novel vacuum airflow filtering system designed for biological sensing applications. It aims to enhance the accuracy and reliability of detecting biological particles in various environments.

Resonant, Multi-Pass Cavity for Cavity Ring-Down Spectroscopy
Inventors: CC Harb, RD Rajapaksha, JM Roberts, XA Moya, R Hebden
Patent Number: US 11,346,780
Year: 2022
Summary: This patent describes a resonant multi-pass cavity system used in cavity ring-down spectroscopy. The technology improves the sensitivity and precision of spectroscopic measurements, advancing research capabilities in various scientific fields.

The Next Generation Gas Tracking Device for Rapid Natural Gas Leak Detection in Pipelines
Authors: RD Rajapaksha, C Harb
Conference: Laser Applications to Chemical, Security and Environmental Analysis
Paper ID: LTh3F.3
Year: 2020
Summary: This conference paper presents a next-generation device for tracking natural gas leaks in pipelines. It leverages advanced laser technology to provide rapid and accurate leak detection, enhancing pipeline safety and operational efficiency.

Research Timeline

Ruwini’s research timeline highlights her progression from a Graduate Teaching and Research Assistant at New Mexico Tech, where she developed new methodologies and safety protocols, to her current role as a Postdoctoral Fellow. Her timeline includes key milestones such as leading significant research projects, securing grants, and publishing influential papers. This timeline demonstrates her continuous growth and evolving expertise in her field.

Collaborations and Projects

Throughout her career, Ruwini has collaborated with various stakeholders, including government agencies like NIOSH and CDC, as well as industry partners. Notable projects include the development of advanced dust monitoring devices and breath-based diagnostic tools. Her collaborative efforts have led to successful research outcomes and innovations, reflecting her ability to work effectively with diverse teams and contribute to impactful projects.

Conclusion

Dr. Ruwini Rajapaksha’s recognition as the Best Researcher underscores her significant contributions to the field of molecular biology and spectroscopy. Her innovative research, impactful publications, and technological advancements highlight her expertise and dedication. By addressing areas such as expanding citation impact, exploring new research applications, increasing grant funding, enhancing her collaboration network, and taking on more mentoring roles, Dr. Rajapaksha can further elevate her profile and continue to make substantial contributions to her field.