Prof. Dr. Hauh-Jyun Chen | Environmental Chemistry | Best Researcher Award

Prof. Dr. Hauh-Jyun Chen | Environmental Chemistry | Best Researcher Award

Prof. Dr. Hauh-Jyun Chen | Environmental Chemistry | Dept Chemistry and Biochemistry at National Chung Cheng University , Taiwan 

Dr. Hauh-Jyun Candy Chen is a Distinguished Professor in the Department of Chemistry and Biochemistry at National Chung Cheng University, Taiwan. She is a leading expert in organic chemistry, chemical carcinogenesis, and mass spectrometric analysis of biomolecules. Dr. Chen earned her Ph.D. in Organic Chemistry from the State University of New York at Stony Brook in 1988 under the supervision of Professor Iwao Ojima. Her research focuses on using mass spectrometry for biomarker identification in cancer and oxidative stress-related diseases. She has made significant contributions to understanding post-translational modifications in hemoglobin and DNA, particularly in relation to cigarette smoking and carcinogen exposure. Dr. Chen has held various academic and research positions in the U.S. and Taiwan, including at the American Health Foundation and the National Institutes of Health. She has published extensively in high-impact journals and is recognized internationally for her pioneering work in analytical toxicology.

Professional Profile : 

Orcid

Scopus  

Summary of Suitability for Award:

Professor Hauh-Jyun Candy Chen is an outstanding researcher in the field of organic chemistry and biochemical research, with a strong focus on mass spectrometry-based biomonitoring, chemical exposome analysis, and biomarker identification related to cancer and smoking-related diseases. Her academic credentials, extensive research experience, and significant scientific contributions make her a strong candidate for the “Best Researcher Award. “Professor Hauh -J yun Candy Chen’s distinguished career, pioneering research in biomolecular analysis, and commitment to scientific advancements in chemistry and biochemistry make her an exceptional candidate for the “Best Researcher Award.” Her work not only deepens the understanding of chemical exposures and their health effects but also has significant translational potential in clinical diagnostics and public health. Given her research impact, leadership in the field, and continuous contributions to high-quality publications, she is highly suitable for this prestigious recognition.

🎓Education:

Dr. Hauh-Jyun Candy Chen completed her Ph.D. in Organic Chemistry at the State University of New York at Stony Brook in 1988. Her dissertation, titled New and Effective Routes to Optically Pure Aromatic Amino Acids, Peptides, and Their Derivatives via Chiral β-Lactam Intermediates, was conducted under the guidance of Professor Iwao Ojima. She earned her Bachelor of Science degree in Chemistry from National Cheng Kung University, Taiwan, in 1983. Dr. Chen’s academic training provided her with a strong foundation in organic synthesis, bioanalytical chemistry, and mass spectrometry. Her interdisciplinary expertise has allowed her to develop innovative methodologies for studying chemical modifications in biomolecules, particularly in relation to disease biomarkers and environmental toxicology. Throughout her career, Dr. Chen has continuously expanded her research scope, integrating advanced analytical techniques to investigate the biochemical impacts of carcinogens, oxidative stress, and metabolic disorders.

🏢Work Experience:

Dr. Hauh-Jyun Candy Chen has over three decades of research and teaching experience in organic chemistry and bioanalytical sciences. She has been a Distinguished Professor at National Chung Cheng University since 2020, where she previously served as Professor (2004-2020), Associate Professor (1999-2004), and Assistant Professor (1997-1999). Before joining academia, she was an Associate Research Scientist at the American Health Foundation (1994-1997), where she worked on nucleic acid chemistry and chemical carcinogenesis. From 1992 to 1994, she was a Senior Research Fellow at the same institution. She also conducted postdoctoral research at the Rockefeller University (1989-1991), the Picower Institute for Medical Research (1991), and the National Institutes of Health (1988-1989). Her extensive research in analytical toxicology and mass spectrometry has advanced the understanding of oxidative and carcinogenic modifications in biomolecules, leading to breakthroughs in biomarker discovery for cancer and exposure assessment.

🏅Awards: 

Dr. Hauh-Jyun Candy Chen has received numerous awards and recognitions for her outstanding contributions to analytical chemistry and toxicology. Her research on post-translational modifications in hemoglobin and the development of mass spectrometric methodologies has been widely recognized. She has been invited to present at international conferences on biomolecular analysis and chemical carcinogenesis. Dr. Chen has received multiple research grants from prestigious funding agencies, reflecting the impact and significance of her work. Her publications in high-impact journals have garnered substantial citations, further establishing her as a leading figure in analytical toxicology. As a dedicated mentor, she has supervised numerous graduate students and postdoctoral researchers, many of whom have gone on to successful academic and industry careers. Her contributions to environmental health, biomarker discovery, and disease diagnostics continue to shape the field of chemical research and biomedical science.

🔬Research Focus:

Professor Hauh-Jyun Candy Chen’s research primarily focuses on the analysis of chemical exposures and their impact on human health using advanced mass spectrometry techniques. Her work emphasizes the identification and quantification of biomarkers for diseases linked to environmental and lifestyle factors, particularly in the context of cancer and smoking-related illnesses. A significant part of her research explores oxidative and post-translational modifications in proteins, such as hemoglobin, resulting from exposure to toxic chemicals like acrolein and malondialdehyde. Through high-resolution mass spectrometry, Professor Chen investigates how these modifications can serve as biomarkers for disease diagnosis and progression, particularly in cancer patients and smokers. Her research also includes studies on the chemical exposome, connecting environmental exposures to human health outcomes. With a focus on precision biomonitoring and toxicology, her work aims to improve disease prevention, early detection, and therapeutic strategies, providing valuable insights into the relationship between chemical exposures and chronic diseases.

Publication Top Notes:

Multiple Oxidative Modifications on Hemoglobin Are Elevated in Breast Cancer Patients as Measured by Nanoflow Liquid Chromatography-Tandem Mass Spectrometry

Authors: H.J.C. Chen, Hauh Jyun Candy; S. Hu, Shunxiang; C. Tu, Chiwen

Year: 2025

Citations: 0

Connecting Chemical Exposome to Human Health Using High-Resolution Mass Spectrometry-Based Biomonitoring: Recent Advances and Future Perspectives

Authors: Y. Chen, Yuanchieh; J.F. Hsu, Jing Fang; C. Chang, Chihwei; H.J.C. Chen, Hauh Jyun Candy; P. Liao, Pao-Chi

Year: 2023

Citations: 15

Response to “Malondialdehyde-Induced Post-Translational Modification of Human Hemoglobin”

Authors: H.J.C. Chen, Hauh Jyun Candy; Y. Liao, Yanling

Year: 2023

Citations: 0

Mass Spectrometry Analysis of DNA and Protein Adducts as Biomarkers in Human Exposure to Cigarette Smoking: Acrolein as an Example

Authors: H.J.C. Chen, Hauh Jyun Candy

Year: 2023

Citations: 15

Characterization and Quantification of Acrolein-Induced Modifications in Hemoglobin by Mass Spectrometry─Effect of Cigarette Smoking

Authors: H.J.C. Chen, Hauh Jyun Candy; S. Cheng, Shuwei; N. Chen, Naiying; D. Wu, Dengchyang

Year: 2022

Citations: 6

Malondialdehyde-Induced Post-translational Modifications in Hemoglobin of Smokers by NanoLC-NSI/MS/MS Analysis

Authors: H.J.C. Chen, Hauh Jyun Candy; C. Chen, Chauyi; Y. Fang, Yahsuan; K. Hung, Kaiwei; D. Wu, Dengchyang

Year: 2022

Citations: 10

 

 

Dr. Yan Xue | Environmental Chemistry | Sustainable Chemistry Award

Dr. Yan Xue | Environmental Chemistry | Sustainable Chemistry Award

Dr. Yan Xue , Nanjing Agricultural University , China

Dr. Yan Xue is a researcher at Nanjing Agricultural University, specializing in environmental nanomaterials. His research focuses on the high-value utilization of green composite nanomaterials derived from modified graphene/graphene-like biochar-based materials. Dr. Xue explores real-time environmental monitoring, remediation of complex environmental conditions, and the development of energy storage devices such as supercapacitors and ionic batteries. His work aligns with global sustainability goals, emphasizing waste-to-waste treatment strategies and eco-friendly material applications. He has contributed significantly to the fields of electrocatalysis, intelligent energy management, and lignocellulose conversion, publishing multiple high-impact research papers.

Professional Profile : 

Orcid

Summary of Suitability for Award:

Dr. Yan Xue is an exceptional candidate for the “Sustainable Chemistry Award” due to his pioneering research in environmental nanomaterials and green chemistry applications. His work focuses on the high-value utilization of biomass-derived functional materials, aligning perfectly with the principles of sustainability, circular economy, and green chemistry. He has contributed significantly to waste-to-waste treatment strategies, converting agricultural and industrial biomass into high-performance materials for environmental remediation, electrochemical sensing, and energy storage applications. His research also supports carbon neutrality and sustainable energy solutions, making a strong impact on global environmental goals. Dr. Yan Xue’s contributions to sustainable chemistry, nanotechnology, and green energy solutions demonstrate scientific excellence and real-world impact. His research addresses critical environmental challenges through eco-friendly material synthesis, pollutant remediation, and sustainable energy storage. Given his innovative approach, interdisciplinary expertise, and commitment to green chemistry, he is a highly suitable candidate for the “Sustainable Chemistry Award”.

🎓Education:

Dr. Yan Xue pursued his academic journey with a strong focus on environmental sciences and materials chemistry. He obtained his doctoral degree from Nanjing Agricultural University, where he specialized in graphene-based biochar nanomaterials. His education was rooted in green chemistry, electrochemical energy storage, and sustainable material applications. His thesis emphasized the modification of biochar-derived nanomaterials for enhanced environmental performance and energy conversion efficiency. With a deep interest in sustainable chemistry and intelligent energy systems, Dr. Xue’s academic training laid a solid foundation for his ongoing research in eco-friendly functional materials.

🏢Work Experience:

Dr. Yan Xue has extensive research experience in high-value biomass utilization, electrocatalysis, and green energy applications. His expertise includes preparing and functionalizing graphene-based nanomaterials for energy storage and environmental monitoring. He has worked on tunable biochar modifications for real-time sensing and remediation of pollutants. Additionally, Dr. Xue has contributed to the development of bio-based energy devices, including supercapacitors and ionic batteries. His interdisciplinary approach integrates materials chemistry, nanotechnology, and environmental sciences to develop innovative solutions for sustainable energy and pollution control.

🏅Awards: 

Dr. Yan Xue has been recognized for his contributions to green materials research and environmental nanotechnology. His work in waste-derived nanomaterials has received accolades in academic and industrial settings. He has been cited in high-impact journals, reflecting his significant contributions to sustainable chemistry and advanced materials. His research in biochar-based nanomaterials has positioned him among emerging leaders in eco-friendly energy storage solutions.

🔬Research Focus:

Dr. Yan Xue’s research primarily focuses on environmental nanomaterials, emphasizing the high-value utilization of biomass-derived functional materials for sustainable applications. His work explores the synthesis, modification, and application of graphene/graphene-like biochar-based nanomaterials to address critical environmental challenges. He specializes in the development of advanced electrochemical sensors, pollutant remediation systems, and green energy storage solutions, integrating principles of electrocatalysis, intelligent energy management, and nanotechnology. Dr. Xue is particularly interested in waste-to-waste treatment strategies, converting agricultural and industrial biomass into high-performance nanomaterials for supercapacitors, ionic batteries, and pollutant detection systems. His research also extends to functional nanocomposites, such as metallic-like boron-doped biochar, porphyrin-modified nanocatalysts, and hybrid carbon nanostructures, for enhanced electrocatalytic performance and environmental sensing. By merging materials chemistry, environmental science, and nanotechnology, Dr. Xue contributes to the development of eco-friendly, cost-effective, and scalable solutions for sustainable energy and pollution control.

Publication Top Notes:

Enhancing capacitive performance through solvent-coupled two-step carbonization of cotton stalk biochar with tunable melamine doping: Deciphering the redox activity of pyrrolic nitrogen

Authors: Yan Xue, [Additional authors not specified]

Journal: International Journal of Hydrogen Energy

Publication Date: March 2025

DOI: 10.1016/j.ijhydene.2025.02.057

New insights into temperature-induced mechanisms of copper adsorption enhancement on hydroxyapatite-in situ self-doped fluffy bread-like biochar

Authors: Yan Xue, [Additional authors not specified]

Journal: Chemical Engineering Journal

Publication Date: January 2024

DOI: 10.1016/j.cej.2023.147657

Efficiently catalytic degradation of tetracycline via persulfate activation with plant-based biochars: Insight into endogenous mineral self-template effect and pyrolysis catalysis

Authors: Yan Xue, [Additional authors not specified]

Journal: Chemosphere

Publication Date: October 2023

DOI: 10.1016/j.chemosphere.2023.139309

Metallic-like boron-modified bio-carbon electrodes for simultaneous electroanalysis for Cd²⁺, Pb²⁺ and Cu²⁺: Theoretical insight into the role of CxBOy(H)

Authors: Yan Xue, [Additional authors not specified]

Journal: Carbon

Publication Date: October 2023

DOI: 10.1016/j.carbon.2023.118350

Highly selective colorimetric platinum nanoparticle-modified core-shell molybdenum disulfide/silica platform for selectively detecting hydroquinone

Authors: Yan Xue, [Additional authors not specified]

Journal: Advanced Composites and Hybrid Materials

Publication Date: August 2023

DOI: 10.1007/s42114-023-00719-z

Pt deposited on sea urchin-like CuCo₂O₄ nanowires: Preparation, the excellent peroxidase-like activity and the colorimetric detection of sulfide ions

Authors: Yan Xue, [Additional authors not specified]

Journal: Journal of Environmental Chemical Engineering

Publication Date: April 2022

DOI: 10.1016/j.jece.2022.107228

Porphyrin-Modified NiS₂ Nanoparticles Anchored on Graphene for the Specific Determination of Cholesterol

Authors: Yan Xue, [Additional authors not specified]

Journal: ACS Applied Nano Materials

Publication Date: November 26, 2021

DOI: 10.1021/acsanm.1c02318

V₂O₅-montmorillonite nanocomposites of peroxidase-like activity and their application in the detection of H₂O₂ and glutathione

Authors: Yan Xue, [Additional authors not specified]

Journal: Applied Clay Science

Publication Date: September 2020

DOI: 10.1016/j.clay.2020.105718

 

 

 

 

Assist. Prof. Dr. Ohyla El gammal | Inorganic Chemistry | Inorganic Chemistry Award

Assist. Prof. Dr. Ohyla El gammal | Inorganic Chemistry | Inorganic Chemistry Award

Assist. Prof. Dr. Ohyla El gammal , Menofia university , Egypt

Dr. Ohyla Ahmed Abd El-Latif El-Gammal is an Egyptian inorganic chemist specializing in metal complexes, macrocyclic synthesis, and their biomedical applications. She earned her Ph.D. in Inorganic Chemistry from Menoufia University in 2014 and has extensive experience in academia, having served as a lecturer at Najran University, Saudi Arabia, and Menoufia University, Egypt. Her research explores spectroscopic characterization, γ-irradiation effects, and the biological activities of metal complexes. She has attended numerous international conferences and workshops, contributing to scientific discussions on materials science, analytical chemistry, and bioinorganic applications. Dr. Ohyla is actively involved in scientific publishing, having authored several high-impact journal articles. She is also dedicated to mentoring students and advancing knowledge in transition metal chemistry.

Professional Profile:

Scopus 

Summary of Suitability for Award:

Ohyla Ahmed Abd El-Latif El-Gammal is a highly suitable candidate for the “Inorganic Chemistry Award” due to her extensive contributions to the field of inorganic chemistry, particularly in the synthesis and characterization of metal complexes with biomedical applications. Her research focuses on developing innovative macrocyclic ligands, Schiff base complexes, and transition metal coordination compounds. She has made significant advancements in understanding the structural and functional properties of metal-based drugs, emphasizing their potential as anticancer, antimicrobial, and antioxidant agents.Ohyla El-Gammal is an excellent candidate for the “Inorganic Chemistry Award.” Her innovative work in metal complex synthesis, combined with her significant impact on medicinal and environmental chemistry, aligns perfectly with the award’s objectives. Her dedication to advancing inorganic chemistry through both theoretical and applied research makes her a deserving recipient of this prestigious recognition.

🎓Education:

Ohyla Ahmed Abd El-Latif El-Gammal obtained her B.Sc. in Chemistry from the Faculty of Science at Menoufia University, Egypt. She pursued postgraduate studies in Chemistry, further deepening her expertise in the field. She earned her M.Sc. in Inorganic Chemistry, focusing on the synthesis and characterization of metal complexes. Her academic journey culminated in a Ph.D. in Inorganic Chemistry, where she explored the design and application of macrocyclic metal complexes. Additionally, she obtained an ICDL certification, demonstrating her proficiency in information and communication technology. Throughout her education, she developed a strong foundation in coordination chemistry, spectroscopic techniques, and materials science, which later shaped her research interests in anticancer, antioxidant, and antimicrobial studies. Her educational background provided her with the necessary expertise to contribute significantly to the field of inorganic chemistry, particularly in the synthesis of innovative metal complexes with potential biomedical applications.

🏢Work Experience:

Ohyla El-Gammal has extensive experience in academia, serving as a Lecturer in Chemistry at various institutions. She has taught undergraduate courses in inorganic chemistry, transition metals, quantum chemistry, and analytical techniques. Her teaching career includes positions at Najran University, Saudi Arabia, where she contributed to the education of students in the fields of lanthanides, actinides, and phase chemistry. She also served as a faculty member at Northern Border University, Rafha, Saudi Arabia, specializing in principal group chemistry and spectroscopic methods. Additionally, she has been actively involved in laboratory-based instruction, focusing on qualitative and quantitative analytical chemistry. Apart from teaching, she has participated in numerous workshops and conferences, enhancing her expertise in scientific research and publishing. Her experience spans both theoretical and practical aspects of chemistry, making her a well-rounded academic professional with a strong commitment to research and education.

🏅Awards: 

Ohyla El-Gammal has received multiple accolades in recognition of her contributions to chemistry and academia. She has been honored for her participation in prestigious international scientific conferences and workshops, where she presented her research on metal complexes and their biomedical applications. She has actively engaged in high-impact research collaborations, earning recognition for her significant contributions to inorganic chemistry. She has also been acknowledged for her dedication to teaching and mentoring students, ensuring excellence in chemical education. Her involvement in major research projects and her participation in international scientific academies have further established her as a distinguished researcher. In addition, her research on macrocyclic complexes and their anticancer properties has been widely appreciated, leading to invitations to speak at global scientific forums. Her contributions to scientific publishing, along with her active role in international webinars, have cemented her reputation as a dedicated and accomplished chemist.

🔬Research Focus:

Ohyla El-Gammal’s research interests lie in inorganic chemistry, particularly in the synthesis and characterization of metal complexes with biomedical applications. She specializes in the development of macrocyclic ligands, transition metal coordination compounds, and Schiff base complexes. Her work explores the spectroscopic characterization of newly synthesized compounds, focusing on their structural and functional properties. She investigates the impact of γ-irradiation on metal complexes, studying their stability and enhanced biological activity. Her research extends to anticancer, antioxidant, and antimicrobial activities, aiming to develop novel therapeutic agents. She also works on improving the surface morphology of metal complexes for enhanced pharmaceutical applications. Her studies contribute significantly to the understanding of metal-based drugs and their potential in medicine. By integrating spectroscopic analysis and computational modeling, she continues to advance knowledge in the field of inorganic chemistry, contributing to the development of innovative materials for biomedical and environmental applications.

Publication Top Notes:

Synthesis, characterization, molecular docking and in vitro antibacterial assessments of anthracene-bis(hydrazine)thiosemicarbazide complexes with Co(II), Ni(II) and Cu(II) ions

Authors: O.A. El-Gammal, A.A. El-Bindary, A.M. Eldesoky, I.M. Abd Al-Gader

Journal: Journal of Molecular Structure

Year: 2025

Citations: 1

DNA binding, potential anticancer, antioxidant and molecular docking simulations of some isonicotinohydrazide metal complexes with the impact of high energy γ-rays irradiation doses: Synthesis and structural characterization

Authors: O.A. El-Gammal, H.A. El-Boraey, H. Alshater

Journal: Journal of Molecular Structure

Year: 2024

Citations: 1

Bishydrazone ligand and its Zn-complex: synthesis, characterization and estimation of scalability inhibition mitigation effectiveness for API 5L X70 carbon steel in 3.5% NaCl solutions

Authors: O.A. El-Gammal, D.A. Saad, M.N. El-Nahass, K. Shalabi, Y.M. Abdallah

Journal: RSC Advances

Year: 2024

Synthesis, structural characterization, antioxidant, cytotoxic activities and docking studies of schiff base Cu(II) complexes

Authors: G.N. Rezk, O.A. El-Gammal, S.H. Alrefaee, A.A. El-Bindary, M.A. El-Bindary

Journal: Heliyon

Year: 2023

Citations: 20

Synthesis, spectral, DFT, intrinsic constant of DNA binding and antioxidant activity of vanadyl (IV)2+^2+ complexes of a symmetrical bisthiosemicarbazides

Authors: O.A. El-Gammal, M.A.R. El-Nawawy, H.A. Gomaa, B.M. Ismael

Journal: Journal of Molecular Structure

Year: 2023

Citations: 4

Divalent transition metal complexes of multidentate nitrogen, oxygen and sulfur containing ligand: Design, spectroscopic, theoretical molecular modeling and antioxidant-like activity

Authors: B.M. Ismael, M.A.R. El-Nawawy, H.A. Gomaa, O.A. El-Gammal

Journal: Egyptian Journal of Chemistry

Year: 2022