Dr. Vemula Madhavi | Environmental Chemistry | Women Researcher Award

Dr. Vemula Madhavi | Environmental Chemistry | Women Researcher Award

Dr. Vemula Madhavi , Environmental Chemistry , Assistant Professor at BVRIT HYDERABAD College of Engineering for Women, India

Dr. S. Madhavi V is an accomplished chemist with a Ph.D. from Sri Venkateswara University, Tirupati, India. She has cultivated a solid academic and research career focused on nanomaterials, environmental remediation, and analytical chemistry. Currently serving as an Assistant Professor at BVRIT Hyderabad, Dr. Madhavi brings more than 15 years of teaching and research experience. Her work includes a granted Indian patent and multiple high-impact publications in reputed journals. She has also secured funding for research under TEQIP-III, JNTUH. With an h-index of 11 and over 500 citations, her contributions to green synthesis and environmental nanotechnology are widely recognized. A passionate educator and innovator, she continually strives to bridge the gap between research and societal application, especially in the field of water purification using sustainable materials.

Professional Profile : 

Google Scholar

Orcid 

Scopus 

Summary of Suitability for Award:

Dr. S. Madhavi V is highly suitable for the “Women Researcher Award” due to her significant and sustained contributions to the field of chemistry, particularly in nanotechnology and environmental applications. She has over 15 years of combined research and teaching experience, a granted Indian patent on sustainable water purification using graphene oxide from rice husk, and a funded research project under TEQIP-III on green nanomaterials for wastewater treatment. Her scholarly impact includes 540+ citations, h-index of 11, and 12+ research publications in high-impact journals spanning areas such as nanocomposites, MOFs, biomarker sensors, and agricultural nanotechnology. She integrates innovative eco-friendly methodologies in her work and demonstrates leadership as an academic and researcher. Dr. Madhavi has also contributed to science education through multiple academic positions, helping foster the next generation of chemists. Dr. S. Madhavi V embodies the spirit and excellence celebrated by the “Women Researcher Award”. Her impactful research, interdisciplinary approach, and commitment to sustainable science position her as a leading woman in the chemical sciences. Her achievements in patenting, publishing, and funded research underscore her excellence and innovation. She is not only an accomplished scientist but also a role model for aspiring women researchers in India and beyond.

🎓Education:

Dr. Madhavi V pursued her academic journey at Sri Venkateswara University, Tirupati, where she earned her Ph.D. in Chemistry in 2014. Her research was grounded in environmental and materials chemistry, focusing on the synthesis and application of nanomaterials for remediation. She holds an M.Sc. in Chemistry (2008) with a stellar score of 78.9%, and a B.Sc. in Mathematics, Physics, and Chemistry (2006) with an impressive 84%. Her earlier education includes Intermediate (2003) with 90% and SSC (2001) with 88%, showcasing consistent academic excellence throughout. These solid foundations in science and mathematics equipped her with critical analytical skills, enabling her to explore interdisciplinary challenges across chemistry and environmental science. Her academic progression reflects a deep commitment to learning, teaching, and developing sustainable scientific innovations.

🏢Work Experience:

Dr. Madhavi V began her academic career as an Academic Consultant in Chemistry at Yogi Vemana University (2008–2009). She then served as an Assistant Professor at Annamacharya Engineering College, Tirupati (2009–2010), and a Teaching Assistant at S.V. University (2010–2013). Her pedagogical contributions continued at CMRIT, Hyderabad (2013–2014), before joining BVRITH Hyderabad in 2014, where she continues to inspire students. Over 15 years, she has demonstrated excellence in curriculum delivery, research supervision, and innovation-driven education. Her interdisciplinary teaching spans general chemistry, environmental science, nanotechnology, and green chemistry. She has also guided students in research-based learning, integrating academic content with practical applications. Her teaching is marked by a commitment to quality education, fostering critical thinking and sustainable innovation among learners.

🏅Awards: 

Dr. S. Madhavi V has received several honors that underscore her excellence in research and innovation. Notably, she was granted an Indian patent (No. 410482) for her invention titled “Pretreated Rice Husk for Sustainable Graphene Oxide for Adsorptive Removal of Chromium from Water”, which highlights her commitment to sustainable environmental solutions. She also secured a funded research grant under the TEQIP-III collaborative scheme (JNTUH, 2019) for her project focused on synthesizing graphene from agricultural waste for the remediation of heavy metals in wastewater. Her scholarly impact is evidenced by a Google Scholar h-index of 11, i10 index of 11, and over 540 citations, recognizing her influential contributions to nanochemistry and environmental science. She is listed on major research platforms including Scopus, ORCID, and Google Scholar, which reflects her active engagement with the global scientific community. These accolades mark her as a distinguished and impactful woman researcher in the chemical sciences.

🔬Research Focus:

Dr. Madhavi V’s research is centered on green synthesis of nanomaterials, graphene production from biomass, and removal of heavy metals and dyes from wastewater using low-cost adsorbents. Her studies explore the eco-friendly conversion of agricultural waste into high-efficiency nanomaterials, with a focus on water remediation. She is deeply invested in adsorptive technologies, biomass-derived graphene, metal-organic frameworks (MOFs), and environmental sensors. Her work also extends to computational docking of metal complexes, magnetic and optical characterization of ferrites, and controlled release formulations for agricultural sustainability. By integrating sustainable materials science, environmental protection, and analytical techniques, her research contributes significantly to green chemistry and nanotechnology. With a strong inclination toward applications with social and environmental impact, Dr. Madhavi is a dedicated advocate for translating lab-scale innovations into real-world solutions.

Publication Top Notes:

1. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium

Citations: 221

2. An overview on research trends in remediation of chromium

Citations: 94

3. Remediation of chlorpyrifos-contaminated soils by laboratory-synthesized zero-valent nano iron particles: effect of pH and aluminium salts

Citations: 75

4. Synthesis and spectral characterization of iron-based micro and nanoparticles

Citations: 54

5. Chapter 8 – Recent improvements in the extraction, cleanup and quantification of bioactive flavonoids

Citations: 47

6. A selective and sensitive UPLC–MS/MS approach for trace level quantification of four potential genotoxic impurities in zolmitriptan drug substance

Citations: 36

7. Electrochemical investigations of lipase enzyme activity inhibition by methyl parathion pesticide: voltammetric studies

Citations: 33

8. Conjunctive effect of CMC–zero-valent iron nanoparticles and FYM in the remediation of chromium-contaminated soils

Citations: 30

9. Method development and validation study for quantitative determination of 2-chloromethyl-3,4-dimethoxy pyridine hydrochloride a genotoxic impurity in pantoprazole active …

Citations: 26

10. Liquid chromatography–tandem mass spectrometry method for simultaneous quantification of urapidil and aripiprazole in human plasma and its application to human pharmacokinetic …

Citations: 22

 

Dr. Debjyoti Majumder | Environmental Chemistry | Best Researcher Award

Dr. Debjyoti Majumder | Environmental Chemistry | Best Researcher Award

Dr. Debjyoti Majumder , Environmental Chemistry , Clover Organic Pvt. Ltd, India

Dr. Debjyoti Majumder (Ph.D., NET-ICAR) is an agricultural scientist with a specialization in agrometeorology, climate-resilient agriculture, and crop modeling. He has built a distinguished career addressing climate change impacts on crop systems, particularly focusing on rice and maize in eastern India. With a robust academic background from Bidhan Chandra Krishi Viswavidyalaya (BCKV) and Punjab Agricultural University (PAU), he combines theoretical insights with practical field applications. Currently serving as Subject Matter Expert at Clover Organic Pvt. Ltd. in Shillong, Meghalaya, he actively contributes to organic agriculture initiatives, project management, FPO support, and climate adaptation strategies. Previously, he worked as a Scientist (Agrometeorology) at Malda Krishi Vigyan Kendra and as a Technical Officer under the Ministry of Earth Sciences. Dr. Majumder has earned national recognition for his research and has contributed to over 30 scholarly publications. He is passionate about sustainable development, weather-based agroadvisory systems, and integrating ICT tools for farmer-centric innovation.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Majumder has an impressive educational background with a Ph.D. in Agriculture, specializing in climate change impacts on crop productivity and resilience. He has received several prestigious scholarships, including a Junior Research Fellowship from the Indian Council of Agricultural Research (ICAR). His research focus on agrometeorology, weather-based advisory services, climate change impact, and sustainable agriculture is of significant importance in the current global context of climate change. His ability to integrate weather forecasting and crop management practices to help farmers is a testament to his impactful and practical research. His Google Scholar citations (266) and H-index (8) further emphasize the significance of his contributions. Dr. Debjyoti Majumder is a highly suitable candidate for the “Best Researcher Awards”. His academic achievements, innovative and impactful research in agrometeorology and sustainable agriculture, leadership roles, and widespread recognition by peers and academic institutions clearly demonstrate his excellence as a researcher. His work contributes significantly to climate change mitigation and agricultural sustainability, making him a key figure in his field.

🎓Education:

Dr. Majumder completed his B.Sc. in Agriculture from Bidhan Chandra Krishi Viswavidyalaya (BCKV), West Bengal, with specialization in natural resource management and rural work training. He pursued his M.Sc. in Agrometeorology from Punjab Agricultural University (PAU), where his research focused on assessing the impact of climate change on maize yield and water productivity through microclimate modification. He later earned his Ph.D. in Agrometeorology from BCKV, submitting a thesis on modeling rice productivity under future climate scenarios using the ORYZA2000 model. His academic excellence was consistently recognized through university merit scholarships, ICAR JRF (All India Rank 44), and department topper awards. In addition to formal degrees, he undertook short-term certifications in R programming, AI tools, and renewable energy in agriculture. He also participated in a summer training program at Tel Aviv University, Israel, adding international exposure to his academic journey. His education has provided a solid foundation in research, extension, and policy relevance.

🏢Work Experience:

Dr. Majumder is currently serving as a Subject Matter Expert at Clover Organic Pvt. Ltd., Shillong, where he is involved in implementing climate-resilient agricultural practices, promoting organic certification, and managing development projects for farmer producer organizations (FPOs). Prior to this, he worked as SMS (Agrometeorology) at Malda Krishi Vigyan Kendra under UBKV, West Bengal, where he was responsible for disseminating agromet advisories, conducting farmer trainings, preparing weather forecasts, and managing drought/pest alerts. He also served as a Technical Officer at Bihar Agricultural University under the Ministry of Earth Sciences, where he contributed to the Gramin Krishi Mausam Sewa project by working on weather forecasting and agro-climatic research. Across these roles, he has integrated decision support tools, crop models, and ICT platforms for data-driven agricultural planning. His work spans from field-level interventions to strategic planning for climate adaptation and digital agriculture, making him a versatile contributor to sustainable rural development.

🏅Awards: 

Dr. Majumder has received multiple accolades in recognition of his research and extension contributions. He was honored with the Young Scientist Award by the Institute of Scholars (INSc), Bengaluru, and the Best KVK Scientist Award by Vigyan Varta, Bhubaneswar. He also received the Young Scientist Award in Agrometeorology from UBKV and was recognized for Best Oral Presentations at national symposia hosted by TNAU and UBKV. His poster on climate-resilient agriculture earned the 2nd Best Poster Award at an international seminar hosted by the Society for Fertilizer and Environment. Additionally, he won the Paper of Excellence Award from ICAR-CRIDA and the Indian Society of Agrophysics. His academic achievements include being a university merit scholar, department topper, and ICAR JRF recipient. With over 260 citations and an H-index of 8, Dr. Majumder has demonstrated scholarly impact. He also received a DST-SERB travel grant to represent his work internationally, underlining the relevance of his research.

🔬Research Focus:

Dr. Majumder’s research centers on climate-resilient agriculture, crop modeling, and agrometeorological applications. His primary focus is on quantifying the impacts of climate variability on rice and maize productivity using advanced crop simulation models such as ORYZA2000, DSSAT, and INFOCROP. He explores climate risk management through microclimate modification, water-use efficiency, and sustainable input application. His research also integrates ICT tools, such as R, Weather Cock, Drinc, and QGIS, to develop decision support systems for farmers and policymakers. He is particularly interested in modeling future climate scenarios and designing location-specific adaptation strategies that are practical and scalable. In addition, he works on organic farming systems, watershed management, and participatory technology development. Dr. Majumder’s work bridges the gap between predictive modeling and grassroots implementation, enabling him to support climate-smart planning in vulnerable agro-ecological zones. His goal is to enhance agricultural resilience while promoting environmentally sustainable practices in India’s diverse farming landscapes.

Publication Top Notes:

1. Physiological and Molecular Mechanism of Insect Herbivory Tolerance in Plants: A Potential Tool for Resistance Breeding

2. Climate-Smart Technologies for Improving Sugarcane Sustainability in India – A Review

3. Mechanical Transplanting of Rice for Reducing Water, Energy, and Labor Footprints with Improved Rice Yields in the Tropics

 

Prof. Dr. Hauh-Jyun Chen | Environmental Chemistry | Best Researcher Award

Prof. Dr. Hauh-Jyun Chen | Environmental Chemistry | Best Researcher Award

Prof. Dr. Hauh-Jyun Chen | Environmental Chemistry | Dept Chemistry and Biochemistry at National Chung Cheng University , Taiwan 

Dr. Hauh-Jyun Candy Chen is a Distinguished Professor in the Department of Chemistry and Biochemistry at National Chung Cheng University, Taiwan. She is a leading expert in organic chemistry, chemical carcinogenesis, and mass spectrometric analysis of biomolecules. Dr. Chen earned her Ph.D. in Organic Chemistry from the State University of New York at Stony Brook in 1988 under the supervision of Professor Iwao Ojima. Her research focuses on using mass spectrometry for biomarker identification in cancer and oxidative stress-related diseases. She has made significant contributions to understanding post-translational modifications in hemoglobin and DNA, particularly in relation to cigarette smoking and carcinogen exposure. Dr. Chen has held various academic and research positions in the U.S. and Taiwan, including at the American Health Foundation and the National Institutes of Health. She has published extensively in high-impact journals and is recognized internationally for her pioneering work in analytical toxicology.

Professional Profile : 

Orcid

Scopus  

Summary of Suitability for Award:

Professor Hauh-Jyun Candy Chen is an outstanding researcher in the field of organic chemistry and biochemical research, with a strong focus on mass spectrometry-based biomonitoring, chemical exposome analysis, and biomarker identification related to cancer and smoking-related diseases. Her academic credentials, extensive research experience, and significant scientific contributions make her a strong candidate for the “Best Researcher Award. “Professor Hauh -J yun Candy Chen’s distinguished career, pioneering research in biomolecular analysis, and commitment to scientific advancements in chemistry and biochemistry make her an exceptional candidate for the “Best Researcher Award.” Her work not only deepens the understanding of chemical exposures and their health effects but also has significant translational potential in clinical diagnostics and public health. Given her research impact, leadership in the field, and continuous contributions to high-quality publications, she is highly suitable for this prestigious recognition.

🎓Education:

Dr. Hauh-Jyun Candy Chen completed her Ph.D. in Organic Chemistry at the State University of New York at Stony Brook in 1988. Her dissertation, titled New and Effective Routes to Optically Pure Aromatic Amino Acids, Peptides, and Their Derivatives via Chiral β-Lactam Intermediates, was conducted under the guidance of Professor Iwao Ojima. She earned her Bachelor of Science degree in Chemistry from National Cheng Kung University, Taiwan, in 1983. Dr. Chen’s academic training provided her with a strong foundation in organic synthesis, bioanalytical chemistry, and mass spectrometry. Her interdisciplinary expertise has allowed her to develop innovative methodologies for studying chemical modifications in biomolecules, particularly in relation to disease biomarkers and environmental toxicology. Throughout her career, Dr. Chen has continuously expanded her research scope, integrating advanced analytical techniques to investigate the biochemical impacts of carcinogens, oxidative stress, and metabolic disorders.

🏢Work Experience:

Dr. Hauh-Jyun Candy Chen has over three decades of research and teaching experience in organic chemistry and bioanalytical sciences. She has been a Distinguished Professor at National Chung Cheng University since 2020, where she previously served as Professor (2004-2020), Associate Professor (1999-2004), and Assistant Professor (1997-1999). Before joining academia, she was an Associate Research Scientist at the American Health Foundation (1994-1997), where she worked on nucleic acid chemistry and chemical carcinogenesis. From 1992 to 1994, she was a Senior Research Fellow at the same institution. She also conducted postdoctoral research at the Rockefeller University (1989-1991), the Picower Institute for Medical Research (1991), and the National Institutes of Health (1988-1989). Her extensive research in analytical toxicology and mass spectrometry has advanced the understanding of oxidative and carcinogenic modifications in biomolecules, leading to breakthroughs in biomarker discovery for cancer and exposure assessment.

🏅Awards: 

Dr. Hauh-Jyun Candy Chen has received numerous awards and recognitions for her outstanding contributions to analytical chemistry and toxicology. Her research on post-translational modifications in hemoglobin and the development of mass spectrometric methodologies has been widely recognized. She has been invited to present at international conferences on biomolecular analysis and chemical carcinogenesis. Dr. Chen has received multiple research grants from prestigious funding agencies, reflecting the impact and significance of her work. Her publications in high-impact journals have garnered substantial citations, further establishing her as a leading figure in analytical toxicology. As a dedicated mentor, she has supervised numerous graduate students and postdoctoral researchers, many of whom have gone on to successful academic and industry careers. Her contributions to environmental health, biomarker discovery, and disease diagnostics continue to shape the field of chemical research and biomedical science.

🔬Research Focus:

Professor Hauh-Jyun Candy Chen’s research primarily focuses on the analysis of chemical exposures and their impact on human health using advanced mass spectrometry techniques. Her work emphasizes the identification and quantification of biomarkers for diseases linked to environmental and lifestyle factors, particularly in the context of cancer and smoking-related illnesses. A significant part of her research explores oxidative and post-translational modifications in proteins, such as hemoglobin, resulting from exposure to toxic chemicals like acrolein and malondialdehyde. Through high-resolution mass spectrometry, Professor Chen investigates how these modifications can serve as biomarkers for disease diagnosis and progression, particularly in cancer patients and smokers. Her research also includes studies on the chemical exposome, connecting environmental exposures to human health outcomes. With a focus on precision biomonitoring and toxicology, her work aims to improve disease prevention, early detection, and therapeutic strategies, providing valuable insights into the relationship between chemical exposures and chronic diseases.

Publication Top Notes:

Multiple Oxidative Modifications on Hemoglobin Are Elevated in Breast Cancer Patients as Measured by Nanoflow Liquid Chromatography-Tandem Mass Spectrometry

Authors: H.J.C. Chen, Hauh Jyun Candy; S. Hu, Shunxiang; C. Tu, Chiwen

Year: 2025

Citations: 0

Connecting Chemical Exposome to Human Health Using High-Resolution Mass Spectrometry-Based Biomonitoring: Recent Advances and Future Perspectives

Authors: Y. Chen, Yuanchieh; J.F. Hsu, Jing Fang; C. Chang, Chihwei; H.J.C. Chen, Hauh Jyun Candy; P. Liao, Pao-Chi

Year: 2023

Citations: 15

Response to “Malondialdehyde-Induced Post-Translational Modification of Human Hemoglobin”

Authors: H.J.C. Chen, Hauh Jyun Candy; Y. Liao, Yanling

Year: 2023

Citations: 0

Mass Spectrometry Analysis of DNA and Protein Adducts as Biomarkers in Human Exposure to Cigarette Smoking: Acrolein as an Example

Authors: H.J.C. Chen, Hauh Jyun Candy

Year: 2023

Citations: 15

Characterization and Quantification of Acrolein-Induced Modifications in Hemoglobin by Mass Spectrometry─Effect of Cigarette Smoking

Authors: H.J.C. Chen, Hauh Jyun Candy; S. Cheng, Shuwei; N. Chen, Naiying; D. Wu, Dengchyang

Year: 2022

Citations: 6

Malondialdehyde-Induced Post-translational Modifications in Hemoglobin of Smokers by NanoLC-NSI/MS/MS Analysis

Authors: H.J.C. Chen, Hauh Jyun Candy; C. Chen, Chauyi; Y. Fang, Yahsuan; K. Hung, Kaiwei; D. Wu, Dengchyang

Year: 2022

Citations: 10