Iyakutti Kombiah | Materials Chemistry | Lifetime Achievement Award

Dr. Iyakutti Kombiah | Materials Chemistry | Lifetime Achievement Award

Dr. Iyakutti Kombiah | SRM Institute of Science and Technology | India

Dr. Iyakutti Kombiah, an eminent physicist and computational materials scientist, has made outstanding contributions to condensed matter physics, nanomaterials, and energy storage research, with a career spanning over four decades. He obtained his M.Sc. and Ph.D. in Physics from the University of Madras, followed by postdoctoral research in quantum chemistry at Uppsala University, Sweden, supported by SIDA. He served as Lecturer at the University of Madras, Reader and Professor at Madurai Kamaraj University, and later as Professor Emeritus and CSIR Emeritus Scientist at SRM University. His pioneering expertise lies in computational design and experimental validation of nanomaterials for hydrogen storage, photovoltaics, and CO₂ conversion, demonstrated through his leadership of multiple AOARD and ONRG-funded international projects. A prolific scholar with over 229 publications, 1,804 citations, and an h-index of 24, his research continues to influence the fields of energy materials and quantum chemistry. Dr. Iyakutti has held visiting positions at leading institutions in Japan, Canada, and the USA, fostering global collaborations. His recent works (2020–2025) focus on graphene-based hydrogen storage, Heusler alloys, and 2D nanomaterials, combining density functional theory with experimental studies. Honored with CSIR and UGC Emeritus Fellowships, he remains a leading figure advancing computational and sustainable energy materials research in India and beyond.

Profile: ORCID  | Scopus 

Featured Publications

  • Iyakutti, K., Reji, R. P., Rajeswarapalanichamy, R., & Kawazoe, Y. (2025). DFT based computational investigation of 2D monolayer gold (Au)–the goldene. Computational Condensed Matter, 25, e01132.

  • Iyakutti, K., Reji, R. P., Jayan, S., AjayJawahar, K., Karthigeyan, A., Rajeswarapalanichamy, R., & Kawazoe, Y. (2025). Heterostructuring, electronic and hydrogen storage properties of boron, carbon, nitrogen based 2D nanomaterials – A DFT study. International Journal of Computational Materials Science and Engineering, 14(3), 2550028.

  • Iyakutti, K., Reji, R. P., Rajeswarapalanichamy, R., & Kawazoe, Y. (2025, February 26). DFT based computational investigation of 2D monolayer gold (Au)–the goldene. Preprint.

  • Kaliyaperumal, A., Periyasamy, G., Iyakutti, K., & Annamalai, K. (2024). Effect of a mesoporous NiCo₂O₄ urchin-like structure catalyzed with a surface oxidized LiBH₄ system for reversible hydrogen storage applications. RSC Advances, 14, 12345–12354.

  • Iyakutti, K., Reji, R. P., AjayJawahar, K., Lakshmi, I., Rajeswarapalanichamy, R., Surya, V. J., Karthigeyan, A., & Kawazoe, Y. (2024). Interaction of H, H₂, and MgH₂ with graphene and possible application to hydrogen storage—A density functional computational investigation. International Journal of Quantum Chemistry, 124(15), e27467.

 

 

 

Titus Luomba Ombori | Analytical Techniques | Best Researcher Award

Dr. Titus Luomba Ombori | Analytical Techniques
| Best Researcher Award

Dr. Titus Luomba Ombori | University of Dar es Salaam, Mkwawa University College of Education | Tanzania

Dr. Titus Luomba Ombori, PhD, is a Tanzanian Geoarchaeologist and Senior Lecturer in Archaeological Science at the University of Dar es Salaam, Mkwawa University College of Education (MUCE),he has established a distinguished academic and research career with expertise in geoarchaeology, quaternary science, and cultural heritage management. He earned his PhD through the International Doctorate in Quaternary Science and Prehistory at the University of Ferrara, Italy, and previously obtained his MA and BA in Archaeology from the University of Dar es Salaam. His academic excellence is recognized by numerous awards, including the Erasmus Mundus PhD Scholarship, Sida/SAREC Fellowship, and government sponsorships. Dr. Ombori has broad professional memberships in prestigious organizations such as INQUA, SAfA, AFQUA, and EGU, reflecting his active participation in global scholarly communities. With extensive fieldwork experience across Tanzania and Italy, he has led and contributed to major archaeological and paleoenvironmental projects, including the Olduvai Gorge excavations, the DeepCHALLA drilling project, and the Mbuamaji site investigations. His research and consultancy work with UNESCO highlight his ability to bridge science, policy, and community impact. An accomplished scholar with influential publications and invited presentations worldwide, Dr. Ombori continues to shape archaeological knowledge and heritage conservation in Africa and beyond.

Profile: ORCID

Featured Publication

  • Ombori, T. L., Pirrie, D., Power, M. R., Skilling, I., Gidna, A. O., Mabulla, A. Z. P., Bushozi, P. M., Prendergast, M. E., & Grillo, K. M. (2025). Automated SEM-EDS mineralogical characterisation of archaeological pottery from Luxmanda and Mumba Rockshelter, Tanzania. Journal of Archaeological Science: Reports, 105, 105369.

 

Bei Li | Spectroscopy Analysis | Best Researcher Award

Prof. Bei Li | Spectroscopy Analysis
| Best Researcher Award

Prof. Bei Li | University of Chinese Academy of Sciences | China

Prof. Bei Li is a distinguished Research Scientist at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, and Chairman of Hooke Instruments Ltd. He has made pioneering contributions in spectroscopy, biophotonics, nonlinear optics, holography, and AI-based image processing. As Chief Scientist of national research programs and a recipient of prestigious honors including the National High-level Overseas Talent Award and the Jilin Provincial Outstanding Contribution Award, Prof. Li has demonstrated exceptional leadership in advancing optical science and its biomedical applications. He has successfully led six national-level and fourteen provincial-level projects, in addition to numerous municipal and industry collaborations, bridging fundamental science with practical innovation. His outstanding publication record includes 69 SCI-indexed papers, with citation metrics of 824 citations (h-index 17, i10-index 26, Google Scholar) and 516 citations from 427 documents with an h-index of 12 (Scopus). He also holds 27 granted patents and 14 new applications under review. Notably, his development of a microwell-assembled aluminum platform revolutionized single-cell Raman spectroscopy, enabling highly accurate cancer cell classification through machine learning integration. With deep collaborations spanning Cardiff University and Peking University, Prof. Li has advanced cross-disciplinary innovations of global significance, making him a strong candidate for the Best Researcher Award.

Profile: Google Scholar Scopus

Featured Publications

  • Li, B (2026). Deep learning-assisted Raman spectroscopy for rapid lactic acid bacteria identification at the colony level. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Advance online publication.

  • Li, B. (2025). Metabolic activity profiling of high-temperature Daqu microbiota using single-cell Raman spectroscopy and deuterium isotope probing. Analytical Chemistry. Advance online publication.

  • Li, B.,(2025). High-viability circulating tumor cells sorting from whole blood at single cell level using laser-induced forward transfer-assisted microfiltration. Advanced Science. Advance online publication.

  • Li, B., (2025). High-throughput compact Raman spectrometer based on polarization transformation: Development and biological trials. Optics and Lasers in Engineering. Advance online publication.

 

 

 

Jie Hou | Physical Chemistry | Best Researcher Award

Assoc. Prof. Dr. Jie Hou | Physical Chemistry
| Best Researcher Award

Assoc. Prof. Dr. Jie Hou | Anhui University | China

Assoc. Prof. Dr. Jie Hou is an Associate Professor at the, Anhui University, China, whose research focuses on advanced surface science, spintronics, and low-temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS). He earned his PhD in Physical Chemistry at Tohoku University, Japan, under the supervision of Prof. Tadahiro Komeda, following an MS from Zhejiang Normal University and a BS from Harbin Normal University in China. After completing his doctorate, Dr. Hou held prestigious postdoctoral appointments in Japan, Spain, and Germany, working with internationally renowned experts such as Prof. Lucia VITALI and Prof. Richard BERNDT, further advancing his expertise in spin state manipulation, quantum materials, and molecular electronics. His research interests include the detection and control of single spin states, the interplay of Cooper pairs, Yu-Shiba-Rusinov bound states, and Kondo screening, as well as the design of ultra-high-vacuum instrumentation. Dr. Hou has published 16 peer-reviewed articles in high-impact journals such as Applied Surface Science, Journal of Materials Chemistry C, Communications Chemistry, and Advanced Functional Materials, contributing to the fields of spin dynamics, superconductivity, and nanomaterials. He holds a patent on functionalized mesoporous cerium oxide, reflecting his applied research outcomes. His academic contributions are recognized with honors such as the Young Researcher’s Award at the ISSS-8 Symposium in Japan and selection as a candidate for the “One Hundred Talents Project” in Anhui Province, China. With 180 citations across 175 documents, an h-index of 4, and a growing international profile, Dr. Hou continues to advance frontiers in nanoscale physics through innovative research, global collaborations, and teaching excellence.

Profile: Scopus

Featured Publication

  • Hou, J., Xu, N., Khan, M. Z. H., Shan, L., & Komeda, T. (2025). Revealing hydrogen bonding in ordered dopamine films through inelastic tunnelling spectroscopy. Applied Surface Science, 694, 162852.

    Hou, J., Xu, N., Khan, M. Z. H., & Komeda, T. (2023). Spin state manipulation of spiropyran (SP) and Dy complex with SP ligand molecules on Au(111) by scanning tunneling microscopy. Communications Chemistry, 6(1), 37.

    Hou, J., Vázquez, H., & Komeda, T. (2020). Enhanced magnetic spin-spin interactions observed between porphyrazine-derivatives on Au(111). Journal of Materials Chemistry C, 8(46), 16513–16519.

    Hou, J., & Komeda, T. (2018). Porphyrazine film on Au(111). Beilstein Journal of Nanotechnology, 9, 2051–2057.

    Hou, J., Liu, Z., Zhang, Z., Wang, Y., & Viti, L. (2022). Ultrabroadband photodetector based on ferromagnetic van der Waals heterodiode. Advanced Functional Materials, 32(48), 2207561.

 

 

Bruna Carbas | Spectroscopy | Best Researcher Award

Dr. Bruna Carbas | Spectroscopy
| Best Researcher Award

Senior Technician | Mountain Research Center | Portugal

Dr. Bruna Carbas is a food scientist with a PhD in Agricultural Production Chains – from farm to fork, a Master’s in Food Safety, and a Bachelor’s in Food Science. Her career bridges advanced research and practical applications in food safety, nutrition, and cereal and legume science. She has worked with leading institutions such as the Polytechnic Institute of Bragança, the University of Trás-os-Montes and Alto Douro, and the National Institute for Agrarian and Veterinary Research. With expertise spanning nutritional and functional characterization, rheological profiling, and chromatographic analysis, she has contributed to innovation in food quality assessment. Bruna also brings consulting and teaching experience, supporting both academia and the agri-food industry.

Professional Profile

 Scopus | ORCID

Education

Dr. Bruna Carbas has a comprehensive academic background in food science and safety. She earned her PhD in Agricultural Production Chains – from farm to fork from the University of Trás-os-Montes and Alto Douro (UTAD), where she specialized in phytochemical and nutritional analysis of legumes using innovative infrared spectroscopy methods. Prior to her doctorate, she completed a Master’s degree in Food Safety, gaining strong expertise in microbiology, hygiene, and food quality assurance. Her academic foundation began with a Bachelor’s degree in Food Science, which provided core training in chemistry, biochemistry, and food technology. This progressive academic journey, combining theoretical knowledge and advanced analytical skills, has equipped her to excel in research, consultancy, and teaching across the agri-food sector.

Professional Experience

Dr. Bruna Carbas has over a decade of professional experience across research, academia, and consultancy. She has served as a Senior Technician at ESA-IPB, supporting laboratory classes in biochemistry, chemistry, and pharmaceutical sciences while participating in research and service analyses. As a Consultant at ADIVAT, she has guided agri-food companies in quality management and food safety compliance. Her research expertise was strengthened at INIAV, where she evaluated nutritional, rheological, and sensory properties of cereals and legumes, and at CITAB, where she analyzed phytochemicals and developed predictive models for food quality. She has also lectured at multiple polytechnic institutes, teaching food science, biotechnology, and safety. Her diverse experience reflects her leadership in both applied and academic food sciences.

Awards 

Dr. Bruna Carbas has been recognized with competitive research fellowships and academic appointments that highlight her scientific excellence. She was awarded a doctoral fellowship at CITAB (UTAD), where her work on legumes and infrared spectroscopy was highly regarded. She has also held long-term research fellowships at INIAV, contributing significantly to national projects on food quality and safety. Her selection as a guest lecturer at prestigious Portuguese polytechnic institutes further reflects recognition of her academic and professional merit. Additionally, her consultancy work with agri-food companies demonstrates her standing as a trusted expert in food safety. These honors collectively demonstrate her sustained impact on research, education, and industry, positioning her as a leader in food science.

Research Interests 

Dr. Bruna Carbas’s research focuses on the nutritional, functional, and rheological characterization of cereals and legumes, addressing both fundamental science and industrial applications. She has developed and implemented advanced analytical methodologies, including liquid chromatography, spectrophotometry, and infrared spectroscopy, to assess food quality parameters. Her work also emphasizes the construction of predictive models to evaluate nutritional value, anti-nutritional factors, and phytochemical composition, supporting innovation in food safety and product development. In addition to laboratory research, she has contributed to food safety assurance and hygiene practices, ensuring that findings benefit real-world agri-food systems. Her interdisciplinary research bridges chemistry, food technology, and nutrition, ultimately supporting healthier, safer, and more sustainable food production chains.

Publication Top Notes

    • Comparative Analysis of Maize Physico-Chemical Parameters and Mycotoxin Levels in Dual Environments .

    • Year: 2024

    • Development of Prediction Models for the Pasting Parameters of Rice Based on Near-Infrared and Machine Learning Tools .

    • Year: 2023

    • Assessment of Agricultural Practices for Controlling Fusarium and Mycotoxins Contamination on Maize Grains: Exploratory Study in Maize Farms .

    • Year: 2023
    • Potential of Legumes: Nutritional Value, Bioactive Properties, Innovative Food Products, and Application of Eco-friendly Tools for Their Assessment .

    • Year: 2023

    • Evaluation of Biobased Solutions for Mycotoxin Mitigation on Stored Maize.

    • Year: 2022

    • Assessment of Regulated Mycotoxins in Maize Harvested in Portugal .

    • Year: 2021

Conclusion 

Dr. Bruna Carbas is a highly qualified researcher whose academic achievements, practical innovations, and contributions to food safety and quality position her as a strong candidate for the Best Researcher Award. Her work reflects a meaningful balance between fundamental research and industrial application, particularly in food quality and safety critical areas in today’s global food system. With further emphasis on expanding international collaborations and increasing her research visibility, she has the potential to achieve even greater recognition as a leader in agricultural and food science research.

Mahdiyeh Sheikhshoaei | Organic Chemistry | Best Researcher Award

Mrs. Mahdiyeh Sheikhshoaei | Organic Chemistry
| Best Researcher Award

Academy Researcher | Shahid Bahonar University of Kerman | Iran

Mrs. Mahdiyeh Sheikhshoaei is a researcher and laboratory expert in the Department of Mining Engineering at Shahid Bahonar University of Kerman, Iran. With a strong foundation in chemistry, electrochemistry, and nanochemistry, she has established herself as an active contributor to both theoretical and experimental sciences. Her expertise spans the synthesis of nanomaterials, photocatalysts, and coordination compounds, which she applies to catalysis, energy, and environmental remediation. She has published in internationally recognized journals, collaborating with multidisciplinary teams to address scientific and industrial challenges. Alongside her research, she has extensive teaching experience, educating students in chemistry and engineering laboratories. Her work reflects a unique balance between academic excellence, applied science, and innovation for sustainable technological development.

Professional Profile

 Scopus

Education

Mrs. Mahdiyeh Sheikhshoaei has pursued a solid academic background that combines fundamental chemistry with advanced research in nanoscience. She began her studies in chemistry at Shahid Bahonar University of Kerman, building a strong base in chemical principles, laboratory methods, and analytical techniques. She later specialized in electrochemistry, deepening her expertise in energy-related processes, electrochemical systems, and materials science. To further expand her knowledge, she advanced into nanochemistry, exploring synthesis, surface modification, and multifunctional applications of nanostructured materials. This progressive academic journey reflects her ability to integrate theory with application, equipping her with interdisciplinary expertise. Her educational achievements highlight a commitment to excellence and continuous learning, laying the foundation for her impactful contributions to research and teaching in chemistry and engineering.

Professional Experience

Mrs. Mahdiyeh Sheikhshoaei has extensive professional experience in laboratory management, teaching, and applied research. At Shahid Bahonar University of Kerman, she serves as a laboratory expert, supporting academic and research activities in the Department of Mining Engineering. Her responsibilities include overseeing chemistry and mineral processing laboratories, guiding students in practical experiments, and ensuring high-quality laboratory operations. Previously, she gained valuable expertise in soil mechanics and applied laboratory techniques, further strengthening her multidisciplinary skills. Alongside her technical work, she has taught general chemistry and laboratory courses for both chemistry and engineering students, as well as specialized courses in mineral processing, flotation, hydrometallurgy, and analysis. Her professional experience demonstrates a strong integration of teaching, research, and laboratory innovation.

Awards 

Mrs. Mahdiyeh Sheikhshoaei has earned recognition for her contributions in nanochemistry, electrochemistry, and applied catalysis through collaborative research and impactful publications. Her works in organometallic chemistry, photocatalysis, and electrochemical sensor development have been published in reputable international journals, reflecting the quality and relevance of her studies. She has established herself as a valued collaborator in multidisciplinary research, contributing to projects that address challenges in food safety, environmental remediation, and sustainable chemical synthesis. Her dedication to both education and research excellence continues to strengthen her academic profile. Although her honors are primarily reflected in scientific achievements and scholarly recognition, her growing influence positions her as a strong candidate for prestigious awards highlighting innovation and impactful research.

Research Interests 

Mrs. Mahdiyeh Sheikhshoaei research focus lies in the design, synthesis, and application of advanced nanomaterials and coordination compounds for sustainable scientific and industrial solutions. She explores nanochemistry and electrochemistry with emphasis on zeolitic imidazolate frameworks, Schiff base complexes, and uranyl-based systems. Her studies extend to photocatalysts for dye removal, electrochemical sensors for pharmaceutical detection, and catalytic systems for green synthesis. By integrating theoretical and experimental approaches, she advances multifunctional materials with environmental, energy, and biomedical relevance. Her research highlights the importance of interdisciplinary strategies that merge chemistry, engineering, and material science. Through her focus on innovation and sustainability, she contributes to addressing global challenges in clean energy, environmental protection, and advanced analytical technologies.

Publication Top Notes

  • Zeolitic imidazolate frameworks (ZIFs): Versatile materials for sensing and mitigating diverse food contaminants

    Year: 2025

Conclusion 

Mrs. Mahdiyeh Sheikhshoaei is a highly capable researcher whose contributions to nanochemistry, coordination chemistry, and environmental applications mark her as a promising candidate for the Best Researcher Award. Her strengths in interdisciplinary research, impactful publications, and academic service to students and laboratories make her stand out. By expanding her leadership in research projects, engaging in more international collaborations, and securing greater recognition through funding and honors, she can further elevate her academic influence. Her profile demonstrates clear potential for this award, reflecting both current achievements and strong future promise in advancing chemistry and applied sciences.

Jean Geringer | Materials Chemistry | Best Researcher Award

Prof. Dr. Jean Geringer | Materials Chemistry
| Best Researcher Award

Prof. Dr. Jean Geringer | Mines Saint-Etienne | France

Prof. Dr. Jean Geringer is a distinguished expert in biomaterials, tribocorrosion, and materials science with extensive academic and industrial experience. He earned his Ph.D. on fretting corrosion of biomaterials at the École Nationale Supérieure des Mines de Saint-Étienne and later obtained HDR certification in research management, mentoring multiple Ph.D. students and postdocs. He has contributed significantly to the understanding of wear and corrosion mechanisms in orthopedic implants, integrating experimental and theoretical approaches. Currently a professor in biomaterials and tribocorrosion, he has held senior research positions internationally and led entrepreneurial initiatives in implant materials. His work bridges fundamental science and practical applications, demonstrating excellence in innovation, leadership, and interdisciplinary research, making him highly suitable for the Best Researcher Award.

Professional Profile

ORCID | Scopus

Education

Prof. Dr. Jean Geringer academic foundation spans chemistry and materials science. He completed post-secondary preparatory studies in France, followed by a Master’s degree in chemical engineering from the École Nationale Supérieure de Chimie de Toulouse (ENSC-T). He earned a Master’s in materials science at ENSM Saint-Étienne, focusing on biomaterials and contact mechanics. Subsequently, he completed a Ph.D. on fretting corrosion of biomaterials with a French government grant at ENSM Saint-Étienne. Later, he achieved HDR (Habilitation à Diriger des Recherches) at Jean Monnet University, demonstrating research management capability by supervising multiple Ph.D. students and postdoctoral researchers. He also passed competitive national teaching examinations, including Agrégation and CAPES, reflecting a solid blend of scientific knowledge and pedagogical expertise.

Professional Experience

Prof. Dr. Jean Geringer has over two decades of academic and research experience in biomaterials, tribocorrosion, and implant engineering. He served as an assistant professor, later advancing to a full professor at ENSM Saint-Étienne, mentoring Ph.D. students and postdocs. He worked as a senior research fellow at Samara University and led entrepreneurial projects in implant materials. His early career included research assistantships in analytical chemistry and teaching roles across secondary schools, preparatory programs, and university laboratories. He has also held visiting scholar positions in the USA and Europe, enhancing international collaboration. His professional trajectory demonstrates a strong combination of teaching, research, and leadership, with expertise in experimental and theoretical studies of fretting corrosion, wear mechanisms, and implant surface treatments.

Awards 

Prof. Dr. Jean Geringer has received recognition for excellence in research, teaching, and scientific leadership. His HDR certification highlights his capability in supervising Ph.D. and postdoctoral researchers. He has been invited as a visiting scholar at prestigious institutions in the USA and Europe, reflecting international acknowledgment of his expertise. Additionally, he has successfully managed industrial collaborations and entrepreneurial projects in biomaterials for orthopedic implants. His numerous publications in high-impact journals underscore his contributions to the field of tribocorrosion, implant wear, and electrochemical studies. These achievements, combined with his active mentorship and innovation-driven approach, position him as a leading researcher in biomaterials, making him highly suitable for awards recognizing research excellence, leadership, and global impact.

Research Interests 

Prof. Dr. Jean Geringer research focuses on biomaterials, tribocorrosion, and the electrochemical behavior of metallic implants under physiological conditions. He investigates wear and fretting-corrosion mechanisms in orthopedic and dental implants, combining experimental analysis, electrochemical impedance spectroscopy, atomic force microscopy, and theoretical modeling such as the Point Defect Model. His work includes studying protein interactions, surface treatments, polymer-metal interfaces, and the long-term performance of implant materials. He also explores multiscale analysis to enhance implant durability, integrating nanomaterials, coatings, and advanced polymers. The research bridges fundamental understanding with clinical applications, aiming to improve implant longevity and biocompatibility. His innovative and interdisciplinary approach positions him as a thought leader in tribocorrosion and biomaterials science, contributing significantly to healthcare and materials engineering.

Publication Top Notes

  • Zirconia ageing is related to total hip arthroplasty aseptic loosening. A study of 45 retrieved zirconia heads
    Year: 2024

  • Nano/micro implant debris affect osteogenesis by chondrocytes: Comparison between ceramic and UHMWPE from hip walking simulator
    Year: 2022

  • Highly porous Ti as a bone substitute: Triboelectrochemical characterization of highly porous Ti against Ti alloy under fretting-corrosion conditions
    Year: 2021

Conclusion 

Prof. Dr. Jean Geringer  is an exemplary candidate for the Best Researcher Award. His research demonstrates originality, rigor, and tangible contributions to biomedical materials and tribocorrosion science. He combines experimental excellence with mentorship and international experience, producing work that advances both theory and practice. While minor improvements in collaboration, outreach, and computational integration could enhance his impact, his current achievements already reflect leadership, innovation, and influence in his field. Recognition through the Best Researcher Award would be well-justified, honoring both his scientific contributions and the meaningful real-world applications of his research in healthcare and materials engineering.

Iran Sheikhshoaie | Nanotechnology | Women Researcher Award

Prof. Iran Sheikhshoaie| Nanotechnology
| Women Researcher Award

Academic Researcher | Shahid Bahonar University of Kerman | Iran

Prof. Iran Sheikhshoaie is a distinguished scholar in inorganic chemistry with a career dedicated to teaching, research, and innovation. She has significantly contributed to the fields of coordination chemistry, bioinorganic systems, nanomaterials, and electrochemistry, establishing herself as a leader in both theoretical and experimental chemistry. Her academic journey began with a strong foundation in chemistry, progressing to advanced studies and culminating in a Ph.D. in inorganic chemistry. As a professor at Shahid Bahonar University of Kerman, she has guided countless students, inspiring the next generation of scientists. Through her pioneering work on Schiff-base ligands, ion-selective sensors, and photocatalysts, she continues to expand the frontiers of analytical and inorganic chemistry with a balance of depth and innovation.

Professional Profile

Google Scholar | Scopus

Education

Prof. Iran Sheikhshoaie began her academic journey in chemistry with a Bachelor’s degree, followed by advanced postgraduate studies in inorganic chemistry. Her academic training provided her with a strong foundation in both theoretical and applied aspects of the field. She completed a Master’s degree with specialization in inorganic chemistry, where she cultivated expertise in chemical structures, bonding, and reactivity. Building upon this foundation, she pursued doctoral studies, focusing on inorganic chemistry with a particular emphasis on Schiff-base ligands, coordination complexes, and their electronic properties. Her education reflects a well-rounded preparation, combining traditional chemistry with modern computational and experimental approaches. This strong academic background has been instrumental in shaping her career as an accomplished professor and researcher.

Professional Experience

Prof. Iran Sheikhshoaie has built an extensive academic career as a professor of chemistry at Shahid Bahonar University of Kerman, where she teaches and mentors students across undergraduate and postgraduate levels. She has held progressive faculty positions, advancing through assistant, associate, and full professorship, reflecting her contributions to teaching, research, and service. Her teaching portfolio includes general chemistry, inorganic chemistry, symmetry and group theory, organometallic chemistry, and advanced laboratory courses, offering students both theoretical depth and practical skill. Beyond teaching, she has actively led research projects in coordination chemistry, nanochemistry, bioinorganic chemistry, and electrochemistry. Her academic career demonstrates a blend of pedagogy, leadership, and innovation, making her a respected figure within her institution and the wider chemistry community.

Awards 

Prof. Iran Sheikhshoaie has been recognized for her impactful work in chemistry through numerous acknowledgments of her teaching and research contributions. She has achieved distinction within her academic community for her dedication to advancing inorganic chemistry and interdisciplinary studies. Her leadership in the development of novel ligands, ion-selective sensors, and nanostructured materials has earned her respect as both a teacher and researcher. She has received honors for her mentorship of students and her efforts to expand scientific knowledge through collaborative and independent projects. Her reputation is strengthened by a strong publication record in international journals, which has positioned her research as influential within the fields of coordination chemistry and bioinorganic chemistry. These recognitions highlight her academic excellence and professional impact.

Research Interests 

Prof. Iran Sheikhshoaie research integrates coordination chemistry, nanochemistry, and bioinorganic chemistry with practical and theoretical approaches. Her focus includes designing Schiff-base ligands and exploring their electronic structures, nonlinear optical properties, and coordination behavior with transition metals. She also develops ion-selective electrodes, polymeric membrane sensors, and nanostructured compounds for applications in analytical and electrochemistry. In addition, her work on photocatalysts contributes to green chemistry and environmental applications, while her studies in bioinorganic systems explore the interface of chemistry and biology. By combining synthesis, characterization, and computational modeling, she creates a holistic understanding of chemical systems. Her interdisciplinary research not only advances fundamental science but also provides innovative solutions to industrial, environmental, and biomedical challenges.

Publication Top Notes

A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode ..

Year: 2019, Cited by: 285

Performance of metal–organic frameworks in the electrochemical sensing of environmental pollutants .

Year: 2021, Cited by: 230

Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum  complex-carbon nanotube paste electrode .

Year: 2011, Cited by: 168

A novel tridentate Schiff base dioxo-molybdenum  complex: Synthesis, crystal structure and catalytic performance in green oxidation of sulfides by urea hydrogen peroxide .

Year: 2009, Cited by: 163

Magnetic nanomaterials based electrochemical (bio) sensors for food analysis .

Year: 2021, Cited by: 159

Solid phase extraction of copper  by sorption on octadecyl silica membrane disk modified with a new Schiff base and determination with atomic absorption spectrometry .

Year: 2008, Cited by: 152

Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode .

Year: 2011, Cited by: 149

Amplified electrochemical sensor employing screen-printed electrode modified with Ni-ZIF-67 nanocomposite for high sensitive analysis of Sudan I in present bisphenol A .

Year: 2022, Cited by: 134

Conclusion 

Prof. Iran Sheikhshoaie stands out as an exemplary researcher whose academic depth, innovation in inorganic and nanochemistry, and long-standing contributions to electrochemical sensor design make her highly deserving of the Women Researcher Award. Her blend of theoretical and experimental expertise has advanced scientific understanding in diverse fields while her teaching and mentoring continue to inspire the next generation of chemists. With expanded global outreach and greater emphasis on applied innovation, her already strong impact could become transformative. Overall, she exemplifies the qualities of an accomplished woman scientist contributing meaningfully to both science and society.

Ahmed Sobhy Abdelrahim AbdAllah Darwish | Analytical Chemistry | Best Researcher Award

Dr. Ahmed Sobhy Abdelrahim AbdAllah Darwish | Analytical Chemistry
| Best Researcher Award

Dr. Ahmed Sobhy Abdelrahim AbdAllah Darwish | Zagazig University | Egypt

Dr. Ahmed Sobhy Abdelrahim AbdAllah Darwish is a dedicated analytical chemist and Ph.D. candidate at Zagazig University, Egypt, with a parallel leadership role as Methodology Deputy Manager at the Egyptian International Pharmaceutical Industries Company (EIPICO). His career reflects a unique blend of academic excellence and practical innovation in pharmaceutical analysis, method development, and stability studies. With extensive industrial experience across major pharmaceutical companies, he has advanced eco-friendly and regulatory-compliant analytical methodologies. His research contributions, published in respected journals, focus on green HPLC methods for pharmaceuticals, reflecting his commitment to sustainable science. Recognized for his leadership in laboratories and scholarly work, Darwish stands as a promising candidate for the Best Researcher Award, symbolizing impact, innovation, and integrity in analytical chemistry.

Professional Profile

Google Scholar | Scopus |  ORCID

Education

Dr. Ahmed Sobhy Abdelrahim AbdAllah Darwish academic foundation is anchored in analytical chemistry and continuous advancement. He earned his B.Sc. in Chemistry-Physics from Zagazig University with a Very Good grade, followed by a Diploma in Analytical Chemistry (Excellent) and a pre-master qualification with a remarkable 98% grade. He then pursued and completed a Master’s degree in Analytical Chemistry, consolidating his expertise in chromatography and pharmaceutical analysis. Currently, he is a Ph.D. candidate at Zagazig University, focusing on innovative, green analytical methods. Complementing his scientific achievements, he holds a valid TOEFL certificate, demonstrating proficiency in academic English at a doctoral level. His educational trajectory highlights consistent academic excellence, intellectual dedication, and specialization in environmentally sustainable analytical methodologies.

Professional Experience

Dr. Ahmed Sobhy Abdelrahim AbdAllah Darwish has built a rich professional career spanning over 15 years in the pharmaceutical industry. Beginning as a chemist in quality control, he progressed to section head roles in stability and methodology across several leading pharmaceutical companies, including Delta Pharma, Grand Pharma, Averroes, Al-Debeiky, and Copad Pharma. His expertise expanded from QC operations to developing validated methods, stability-indicating procedures, and comparative in vitro studies. Since 2021, he has served as Deputy Manager of Labs Development at EIPICO, overseeing research-driven innovation in method development and stress stability studies. Proficient in advanced analytical tools such as HPLC, GC, AAS, ICP, and UV-Vis spectrophotometry, Darwish’s experience exemplifies leadership, innovation, and technical mastery in pharmaceutical analysis and regulatory compliance.

Awards 

Dr. Ahmed Sobhy Abdelrahim AbdAllah Darwish achievements are reflected through his publications, leadership roles, and professional recognition in pharmaceutical research and development. As a corresponding author of several peer-reviewed articles in esteemed journals such as Talanta Open, Results in Chemistry, and Biomedical Chromatography, his work has been acknowledged for scientific rigor and ecological innovation. His academic excellence is demonstrated by his consistently high educational grades, including a 98% pre-master score and distinctions in diplomas and degrees. Professionally, his rise to Deputy Manager at EIPICO stands as recognition of his leadership and technical impact. While formal awards are emerging, his honors are embedded in his published works, industry trust, and contribution to sustainable pharmaceutical analysis, which collectively merit the Best Researcher Award.

Research Interests 

Dr. Ahmed Sobhy Abdelrahim AbdAllah Darwish research focus centers on developing eco-friendly, validated analytical methods that advance pharmaceutical quality while minimizing environmental impact. His expertise lies in High-Performance Liquid Chromatography (HPLC) applications, where he has pioneered sustainable approaches to drug quantification and stability analysis. His projects include innovative methods for quantifying piracetam, vincamine, valsartan, sacubitril, simvastatin, fenofibrate, and other essential drugs. A recurring theme in his research is the use of green solvents, reduced resource consumption, and adherence to regulatory standards for drug safety. Darwish’s focus also includes comparative in vitro studies and stress stability research, crucial to ensuring drug efficacy and shelf-life. By integrating ecological responsibility with analytical precision, his research contributes significantly to sustainable pharmaceutical sciences.

Publication Top Notes

Environmental sustainability profiles assessment of HPLC stability indicating method for quantitation of piracetam and vincamine in pharmaceutical medications .

Year: 2025 | Cited by: 7

An ecologically sound HPLC determination of LEVOMENOL in topical therapies using a certified reference material with green properties .

Year: 2025 | Cited by: 5

Developing a sensitive, ecological, and economic HPLC method for the concurrent quantification of KOLCHICINE and KHELLIN, used in bulk and sachet pharmaceuticals .

Year: 2025 | Cited by: 1

Green rapid HPLC method for testing retinol and tocopherol in ophthalmic gels .

Year: 2025

Green rapid HPLC method for testing retinol and tocopherol in ophthalmic gel .

Year: 2025

Simple validated approach to quantify valsartan and sacubitril in medications using liquid chromatography .

Year: 2025 | Cited by: 1

Conclusion 

Dr. Ahmed Sobhy Abdelrahim AbdAllah Darwish is a strong candidate for the Best Researcher Award, with a career that blends academic achievement, innovative research, and industrial expertise. His focus on sustainable analytical methods positions him at the forefront of environmentally conscious pharmaceutical science. While further growth in international collaborations, high-impact publishing, and patents could elevate his profile, his current accomplishments already reflect excellence and promise. He embodies the qualities of a researcher who not only advances science but also addresses global sustainability challenges. Recognizing him with the Best Researcher Award would acknowledge both his individual achievements and his broader contribution to green and responsible pharmaceutical analysis.