Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Best Researcher Award

Prof. Behrooz Zargar | Analytical Chemistry | Full Professor in Analytical Chemistry/Researcher/Lecturer at Shahid Chamran University of Ahvaz, Iran 

Prof. Behrooz Zargar is a distinguished Full Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, Iran, with over two decades of academic and research excellence. His expertise spans electrochemistry, nano-chemistry, solar cells, and environmental remediation. He has published over 60 high-impact research papers and actively collaborates with organizations such as ISO and the Iranian Safety and Environment Committee. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has played a pivotal role in advancing analytical techniques. His research has contributed significantly to pesticide analysis, mycotoxin detection, and nanomaterial-based pollutant degradation. His commitment to academia is reflected in his editorial appointments, research collaborations, and mentorship of numerous students. With an impressive citation index of 2143, Prof. Zargar’s groundbreaking work has influenced various industrial and environmental sectors, making him a leading figure in analytical and environmental chemistry.

Professional Profile :         

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Behrooz Zargar, a distinguished Professor of Analytical Chemistry at Shahid Chamran University of Ahvaz, has made remarkable contributions to analytical chemistry, particularly in nanotechnology, electrochemistry, and environmental chemistry. With over 60 publications in high-impact journals (SCI, Scopus indexed), a citation index of 2143, and extensive research in solar cells, solid-phase extraction, and photo-degradation, his scientific impact is substantial. His research collaborations, including work with ISO Organization and national standardization committees, demonstrate his leadership in applied scientific advancements. Additionally, his industry projects on food safety and environmental toxin analysis highlight his contributions to public health and sustainability. With a proven track record of pioneering research, industry collaborations, and leadership in analytical chemistry, Prof. Zargar stands as a highly deserving candidate for the “Best Researcher Award.” His groundbreaking research in nano-chemistry and solar cell technology continues to drive innovation, making him an excellent choice for this prestigious recognition.

🎓Education:

Prof. Behrooz Zargar holds a Ph.D. in Analytical Chemistry (2001) from Shahid Chamran University of Ahvaz. He earned his Master’s degree in Analytical Chemistry (1996) from the same institution, building a strong foundation in instrumental analysis and environmental monitoring. His Bachelor’s degree in Applied Chemistry (1992) from Isfahan University of Technology laid the groundwork for his interest in chemical applications for industrial and environmental solutions. Prior to university education, he completed a Diploma in Experimental Sciences, fostering his analytical skills early on. His academic journey reflects a commitment to precision, innovation, and interdisciplinary research. Over the years, he has integrated electrochemical, spectroscopic, and chromatographic techniques into his research, making significant contributions to chemical science. His education has been instrumental in shaping his expertise in nano-chemistry, separation sciences, and environmental remediation, areas where he continues to make impactful discoveries.

🏢Work Experience:

Prof. Zargar’s academic career spans over two decades at Shahid Chamran University of Ahvaz, where he has held various positions. He served as an Assistant Professor (2002-2009), progressing to Associate Professor (2009-2017), and was promoted to Full Professor in 2017. With a Grade 32 ranking, he has contributed extensively to teaching, research, and institutional leadership. He has collaborated with ISO, developed national safety and environmental standards, and played a key role in nanotechnology advancements. His consultancy work has influenced industries by assessing toxic residues in food, environmental contaminants, and industrial pollutants. As the Founder and Head of the Central Laboratory at Shahid Chamran University, he has enhanced research infrastructure, fostering innovation. His experience extends to mentoring Ph.D. and Master’s students, shaping the next generation of chemists. His expertise in solar cells, electroless plating, corrosion, and electrochemical preconcentration has made him a respected figure in analytical and industrial chemistry.

🏅Awards: 

Prof. Behrooz Zargar’s contributions to analytical chemistry and environmental sciences have earned him numerous accolades. He was recognized for 10 years of excellent service to ISO/TC 17/SC 1/ WG 74 in 2025 for his contributions to steel chemical composition analysis. His work in nanotechnology and environmental monitoring has been acknowledged by national and international scientific committees. As a key member of the Iranian Safety and Environment Committee, he has shaped national policies on chemical safety and environmental sustainability. His editorial appointments in high-impact journals further highlight his scholarly influence. His innovative work in photo-degradation, nano-based solid-phase extraction, and pesticide residue analysis has led to several research grants and industrial collaborations. His role in the development of national analytical standards in Khuzestan, Iran, reflects his commitment to advancing chemical safety regulations. Prof. Zargar’s outstanding research contributions and institutional leadership make him a highly esteemed scientist.

🔬Research Focus:

Prof. Zargar’s research spans analytical, environmental, and industrial chemistry, with a strong emphasis on nanotechnology applications. His work in electrochemical preconcentration and separation techniques has improved trace-level detection of contaminants in food and water. His nano-chemistry expertise has advanced solar cell technology, particularly FeS₂/TiO₂-based solar cells. He has pioneered printed-based voltammetric selective electrodes for precise electrochemical analysis. His work in photo-degradation of cyanide ions using nanomaterials has significant environmental implications. He has developed aerogel-based solid-phase extraction methods for efficient pollutant removal. His industrial research includes toxic residue detection in grains, milk, and bread. His collaboration with ISO and the Iranian Nanotechnology Committee has led to the establishment of new safety and environmental guidelines. His research continues to bridge analytical chemistry with environmental sustainability, contributing to the development of safer chemical practices and advanced material applications.

Publication Top Notes:

A nano curcumin–multi-walled carbon nanotube composite as a fluorescence chemosensor for trace determination of celecoxib in serum samples

An effervescence-assisted dispersive liquid–liquid micro-extraction of captopril based on hydrophobic deep eutectic solvent

Citations: 8

Determination of Tetracycline Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Followed by HPLC–UV System​​

Over-oxidized carbon paste electrode modified with pretreated carbon nanofiber for the simultaneous detection of epinephrine and uric acid in the presence of ascorbic acid​​

Dendrimer-modified magnetic nanoparticles as a sorbent in dispersive micro-solid phase extraction for preconcentration of metribuzin in a water sample​​

Synthesis and dye adsorption studies of the {dibromo(1,1′-(1,2-ethanediyl)bis(3-methyl-imidazole-2-thione)dicopper(i)}n polymer and its conversion to CuO nanospheres for photocatalytic and antibacterial applications​​

Adsorption and removal of ametryn using graphene oxide nano-sheets from farm waste water and optimization using response surface methodology​​

Application of vortex-assisted solid-phase extraction for the simultaneous preconcentration of Cd(ii) and Pb(ii) by nano clinoptilolite modified with 5(p-dimethylaminobenzylidene) rhodanine​​

Metal oxide/TiO₂ nanocomposites as efficient adsorbents for relatively high temperature H₂S removal​​

Novel magnetic hollow zein nanoparticles for preconcentration of chlorpyrifos from water and soil samples prior to analysis via high-performance liquid chromatography (HPLC)

**Synthesis of an ion-imprinted sorbent by surface imprinting of magnetized carbon nanotubes for determination

Amanpreet Kaur | Inorganic Chemistry | Best Researcher Award

Assist Prof Dr. Amanpreet Kaur Inorganic Chemistry| Best Researcher Award

Assistant Professor at Guru Nanak Dev University, Amritsar, Punjab, India

Dr. Amanpreet Kaur is an accomplished Assistant Professor in the Department of Chemistry at Guru Nanak Dev University, Amritsar, specializing in Inorganic Chemistry and its applications in electrochemical energy. With extensive research experience across several prestigious institutions globally, Dr. Kaur has made significant contributions to the fields of electrocataysis and energy storage.

Author Metrics

Google Scholar Profile

ORCID Profile

Dr. Kaur’s research impact is evidenced by her Google Scholar profile, which lists a total of 928 citations, an h-index of 17, and an i10-index of 29. These metrics highlight her active engagement and influence within the academic community, reflecting the relevance and quality of her research contributions.

Education

Dr. Kaur completed her Bachelor’s degree in Medical Science from Panjab University in 2008, followed by a Master’s degree in Chemistry from Guru Nanak Dev University in 2010. She achieved her Ph.D. in Chemistry from the same institution in 2016, showcasing a strong foundational knowledge that supports her current research endeavors.

Research Focus

Her research interests encompass a wide array of topics including Metal-Organic Frameworks (MOFs), polyoxometalates, and electro/photoelectrocatalysis. Dr. Kaur is particularly focused on developing sustainable energy solutions through electrochemical energy storage and the electrocatalytic conversion of biowaste into valuable chemicals and biofuels.

Professional Journey

Dr. Kaur’s professional trajectory includes prestigious postdoctoral and visiting research positions at notable institutions, such as the Technion in Israel and the Indian Institute of Technology, Delhi. Her current role as an Assistant Professor began in April 2023, marking a significant milestone in her academic career.

Honors & Awards

Dr. Kaur has received several accolades, including a Gold Medal for her academic excellence in her Master’s program and multiple international travel grants from the Department of Science and Technology (DST), India. Her recognition as a lifetime member of the Chemical Research Society of India further underscores her commitment to her field.

Publications Noted & Contributions

Dr. Kaur has contributed to various journals and has authored book chapters, including significant works on nanocomposites and electrocatalysts. Her publications demonstrate her research’s practical implications, particularly in environmental and biomedical applications.

Dual Channel Rhodamine Appended Smart Probe for Selective Recognition of Cu²⁺ and Hg²⁺ via “Turn On” Optical Readout

Publication: Analytica Chimica Acta
Date: July 2023
DOI: 10.1016/j.aca.2023.341299
Contributors: Pawan Kumar Sada, Amit Bar, Amanpreet Kaur Jassal, Alok Kumar Singh, Laxman Singh, Abhishek Rai
Overview: This article presents a smart probe designed for the selective detection of copper (Cu²⁺) and mercury (Hg²⁺) ions using a “turn on” optical readout. The research emphasizes the development of a dual-channel sensor that enhances sensitivity and specificity for these heavy metals, which are of significant environmental and health concern.

A Rational Assembly of Paradodecatungstate Anions from Clusters to Morphology-Controlled Nanomaterials

Publication: Materials Chemistry Frontiers
Date: 2021
DOI: 10.1039/D0QM00646G
Contributors: Amanpreet Kaur Jassal, Rahul Kumar Mudsainiyan, Ravi Shankar
Overview: This study focuses on the synthesis and characterization of nanomaterials derived from paradodecatungstate anions. The work highlights the rational design of these nanomaterials and their potential applications in materials science, particularly in enhancing functionality through controlled morphology.

Advances in Ligand-Unsupported Argentophilic Interactions in Crystal Engineering: An Emerging Platform for Supramolecular Architectures

Publication: Inorganic Chemistry Frontiers
Date: 2020
DOI: 10.1039/D0QI00447B
Contributors: Amanpreet Kaur Jassal
Overview: This article reviews the developments in ligand-unsupported argentophilic interactions and their implications in crystal engineering. Dr. Kaur discusses how these interactions can be leveraged to create novel supramolecular architectures, expanding the possibilities in material design.

Magnetic, Luminescence, Topological and Theoretical Studies of Structurally Diverse Supramolecular Lanthanide Coordination Polymers with Flexible Glutaric Acid as a Linker

Publication: New Journal of Chemistry
Date: 2019
DOI: 10.1039/C9NJ03664D
Contributors: Manesh Kumar, Cheng-Qiang Qiu, Jan K. Zaręba, Antonio Frontera, Amanpreet Kaur Jassal, Subash Chandra Sahoo, Sui-Jun Liu, Haq Nawaz Sheikh
Overview: This paper investigates the structural diversity of lanthanide coordination polymers linked by glutaric acid. The research includes magnetic and luminescent properties, along with theoretical studies that provide insights into the coordination chemistry of lanthanides, paving the way for potential applications in advanced materials.

Indirect Influence of Alkyl Substituent on Sigma-Hole Interactions: The Case Study of Antimony(III) Diphenyldithiophosphates with Covalent Sb-S and Non-Covalent Sb⋯S Pnictogen Bonds

Publication: Polyhedron
Date: November 2019
DOI: 10.1016/j.poly.2019.114126
Contributors: Anu Radha, Sandeep Kumar, Deepika Sharma, Amanpreet K. Jassal, Jan K. Zaręba, Antonio Franconetti, Antonio Frontera, Puneet Sood, Sushil K. Pandey
Overview: This research explores the influence of alkyl substituents on sigma-hole interactions in antimony(III) compounds. It highlights the significance of both covalent and non-covalent interactions, contributing to a better understanding of bonding in coordination chemistry and its implications for material properties.

Research Timeline

Dr. Kaur’s research timeline is marked by key projects funded by the DST, focusing on the synthesis and application of coordination compounds and the development of catalysts for water oxidation. Her ongoing projects further explore single-atom catalysts for efficient electrocatalytic water splitting.

Conclusion

In summary, Dr. Amanpreet Kaur is a distinguished chemist whose academic and research contributions are shaping the future of inorganic chemistry and sustainable energy applications. Her commitment to teaching, research, and mentorship continues to inspire future generations of scientists.