Dr. Eugene Ayuk | Organic Synthesis | Editorial Board Member

Dr. Eugene Ayuk | Organic Synthesis | Editorial Board Member

Senior Lecturer | Godfrey Okoye University | Nigeria

Dr. Eugene Ayuk is an accomplished organic and medicinal chemist whose research spans synthetic methodology, heterocyclic chemistry, phytochemical analysis, and the biological evaluation of novel therapeutic compounds. His work integrates organic synthesis with computational docking, antimicrobial screening, and structure–activity investigations to develop innovative phenothiazine derivatives, peptide-based molecules, and functionalized heterocycles with potential pharmaceutical relevance. He has made significant contributions to understanding heavy-metal contamination and antioxidant properties of foods and natural products, providing insights into environmental toxicology and public health. Dr. Ayuk’s research further explores phytochemicals, secondary metabolites, and bioactive extracts from indigenous plant species, contributing valuable data on their antimicrobial and antioxidant properties. His investigations into nanostructured materials, biological catalysts in organic synthesis, and tandem catalytic transformations highlight his multidisciplinary approach. He has published widely in reputable international journals, with a growing footprint in medicinal chemistry and computational drug-design studies. According to Google Scholar, he has accumulated 312 citations, an h-index of 7, and an i10-index of 4, reflecting the growing influence and visibility of his research. Scopus records 37 citations across 5 indexed documents with an h-index of 2, demonstrating measurable impact within the indexed scientific literature. His consistent scholarly output and collaborative scientific contributions position him as an emerging researcher dedicated to advancing synthetic chemistry, natural product chemistry, and medicinally relevant molecular design.

Profiles : Google Scholar | Scopus 

Featured Publications : 

  • Godwill, E. A., Jane, I. C., Scholastica, I. U., Marcellus, U., Eugene, A. L., & Gloria, O. A. (2015). Determination of some soft drink constituents and contamination by some heavy metals in Nigeria. Toxicology Reports, 2, 384–390.

  • Ayuk, E. L., Ugwu, M. O., & Aronimo, S. B. (2017). A review on synthetic methods of nanostructured materials. Chemistry Research Journal, 2(5), 97–123.

  • Unaegbu, M., Engwa, G. A., Abaa, Q. D., Aliozo, S. O., Ayuk, E. L., Osuji, G. A., … (2016). Heavy metal, nutrient and antioxidant status of selected fruit samples sold in Enugu, Nigeria. International Journal of Food Contamination, 3(1), 7.

  • Engwa, G. A., Ayuk, E. L., Igbojekwe, B. U., & Unaegbu, M. (2016). Potential antioxidant activity of new tetracyclic and pentacyclic nonlinear phenothiazine derivatives. Biochemistry Research International, 2016, 9896575.

  • Ayuk, E. L., Ilo, S. U., Njokunwogbu, A. N., Engwa, G. A., Oni, T. O., & Okoro, U. C. (2015). Synthesis and characterization of 6-(4-bromophenyl)-10-methyl-11-azabenzo[a]phenothiazin-5-one. International Journal of Materials and Chemistry, 5(2), 44–47.

Assoc. Prof. Dr. Paresh Patel | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Paresh Patel | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Paresh Patel , Uka Tarsadia University , India

Dr. Paresh N. Patel, is an Indian chemist and academic leader, currently serving as the I/c Director of the Tarsadia Institute of Chemical Science, Uka Tarsadia University, Gujarat. With over 12 years of experience in teaching, research, and administration, Dr. Patel has significantly contributed to organic synthesis, nanotechnology, and bio-sensor development. He has authored 42 peer-reviewed publications, holds five patents, and supervised numerous MSc and PhD scholars. As an editor and reviewer for reputed journals, he actively engages in the scientific community. Dr. Patel has been instrumental in securing several high-value research grants, collaborating with academia and industry to advance chemical sciences.

Professional Profile

Orcid

Scopus

Summary of Suitability for Award:

Dr. Paresh N. Patel is an accomplished researcher with a prolific career spanning over a decade in chemical sciences. His expertise lies in organic synthesis, nanotechnology, and biosensor development, supported by 42 international publications, five patents, and significant research grants totaling over ₹3 crore. He has successfully led and collaborated on high-impact projects funded by prestigious organizations such as DST, GUJCOST, GSBTM, and DBT, demonstrating his ability to secure competitive funding and deliver innovative outcomes. Dr. Paresh N. Patel’s exceptional achievements, diverse research portfolio, and impactful contributions make him highly suitable for the “Best Researcher Award.” His innovative work has advanced the frontiers of chemical sciences and demonstrated practical relevance, aligning with the award’s objective of recognizing excellence in research.

🎓Education:

Dr. Paresh N. Patel completed his PhD in Organic Synthesis from Sardar Patel University in 2013, after earning an MSc in Organic Chemistry (2009) and a BSc in Chemistry (2007) from the same institution. His academic training provided a robust foundation for his research in asymmetric synthesis, nanomaterials, and renewable resources. During his doctoral studies, he specialized in single-crystal X-ray diffraction and advanced organic methodologies. He also received an Institute Postdoctoral Fellowship at IIT Madras, where he further honed his expertise in heterocyclic compound synthesis. Over his academic journey, Dr. Patel has consistently demonstrated academic excellence, evident in his comprehensive research output and accolades for innovation.

🏢Work Experience:

Dr. Paresh N. Patel has an illustrious career spanning academia and research. He has served as an I/c Director at Tarsadia Institute of Chemical Science since 2019 and was promoted to Associate Professor in 2024. Previously, he was an Assistant Professor (2016–2024) at Uka Tarsadia University and a Postdoctoral Fellow at IIT Madras (2013–2016), contributing to teaching and research in organic chemistry. He has also worked as a Fellow at NIF-Ahmedabad and an SRF at Sardar Patel University. His roles have encompassed teaching spectroscopy, nanotechnology, and stereochemistry, as well as guiding MSc, PhD, and Postdoctoral scholars. Dr. Patel’s leadership in organizing scientific events and workshops reflects his dedication to fostering innovation and skill development in chemical sciences.

🏅Awards: 

Dr. Paresh N. Patel has earned numerous accolades for his contributions to chemical research. He was awarded the prestigious DST Inspire Grant (₹24 lakh) and several significant project grants, including ₹30 lakh from GUJCOST and ₹32 lakh from GSBTM. He also received an International Travel Grant from DBT to present his research in the USA and was a recipient of a ₹10 lakh ICSR-IIT Madras project fund. His excellence in academia has been recognized through various seed grants from Uka Tarsadia University and industrial-funded research projects. Additionally, his proposals under DST-SYST and DST-TDP are under consideration, with a substantial ₹3 crore DST-FIST project in preparation. These accolades highlight Dr. Patel’s commitment to advancing scientific knowledge and fostering impactful collaborations.

🔬Research Focus:

Dr. Paresh N. Patel’s research centers on innovative applications of organic chemistry and nanotechnology. His projects include developing nano-scale organic biosensors (DST-SERB) and synthesizing gold nanoparticles from renewable resources for organic synthesis (GSBTM). He also explores asymmetric synthesis using biocatalysts and collaborates with industry to develop biotechnology for hydrogen and ethanol production. His research portfolio includes several high-value grants, such as DST Inspire, GUJCOST, and GSBTM. Dr. Patel’s interdisciplinary approach integrates materials science, biotechnology, and organic chemistry, aiming to address environmental and industrial challenges. His work not only advances theoretical understanding but also offers practical solutions in chemical and biosensor technology.

Publication Top Notes:

Title: Study of lawsone and its modified disperse dyes derived by triple cascade reaction: dyeing performance on nylon and polyester fabrics
Authors: Patel, N.C., Desai, D.H., Patel, P.N.
Year: 2024
Citations: 2

Title: Selective detection of azelnidipine in pharmaceuticals via carbon dot mediated spectrofluorimetric method: A green approach
Authors: Lodha, S.R., Gore, A.H., Merchant, J.G., Shah, S.A., Shah, D.R.
Year: 2024
Citations: 1

Title: Benzothiophene based semi-bis-chalcone as a photo-luminescent chemosensor with real-time hydrazine sensing and DFT studies
Authors: Oza, N.H., Kasundra, D., Deshmukh, A.G., Boddula, R., Patel, P.N.
Year: 2024
Citations: 0

Title: A lawsone based novel disperse dyes with DHPMs scaffold: dyeing studies on nylon and polyester fabric
Authors: Patel, N.C., Talati, K.S., Patel, P.N.
Year: 2024
Citations: 0

Title: Surface functionalized graphene oxide integrated 9,9-diethyl-9H-fluoren-2-amine monohybrid nanostructure: Synthesis, physicochemical, thermal and theoretical approach towards optoelectronics
Authors: Borane, N., Boddula, R., Odedara, N., Jirimali, H., Patel, P.N.
Year: 2024
Citations: 1

Title: Fungus reinforced sustainable gold nanoparticles: An efficient heterogeneous catalyst for reduction of nitro aliphatic, aromatic and heterocyclic scaffolds
Authors: Deshmukh, A.G., Rathod, H.B., Patel, P.N.
Year: 2023
Citations: 1

Title: Green and sustainable bio-synthesis of gold nanoparticles using Aspergillus Trinidadensis VM ST01: Heterogeneous catalyst for nitro reduction in water
Authors: Deshmukh, A.G., Mistry, V., Sharma, A., Patel, P.N.
Year: 2023
Citations: 3

Title: Design and synthesis of chalcone mediated novel pyrazoline scaffolds: Discovery of benzothiophene comprising antimicrobial inhibitors
Authors: Tandel, S.N., Kasundra, D.V., Patel, P.N.
Year: 2023
Citations: 2

Title: Studies of novel benzofuran based chalcone scaffolds: A dual spectroscopic approach as selective hydrazine sensor
Authors: Tandel, S.N., Deshmukh, A.G., Rana, B.U., Patel, P.N.
Year: 2023
Citations: 4

Title: Novel chalcone scaffolds of benzothiophene as an efficient real-time hydrazine sensor: Synthesis and single crystal XRD studies
Authors: Tandel, S.N., Mistry, P., Patel, P.N.
Year: 2023
Citations: 4

 

 

 

Prof. Kurosh Rad-Moghadam | Organic Chemistry Award | Best Researcher Award

Prof. Kurosh Rad-Moghadam | Organic Chemistry Award | Best Researcher Award

Prof. Kurosh Rad-Moghadam, University of Guilan , Iran 

Prof. Kurosh Rad-Moghadam is an esteemed Professor of Organic Chemistry at the University of Guilan, Iran. With a foundation in pure and organic chemistry, he completed his BSc, MSc, and PhD at Shahid Beheshti University, Tehran, focusing on multicomponent syntheses and quinazoline derivatives. Joining the University of Guilan , Prof. Rad-Moghadam has since established himself as a leader in organic synthesis, specializing in advanced NMR spectroscopy, polymer chemistry, and nanotechnology. He has supervised over 60 MSc and PhD theses, guiding pioneering research on bioderived nanocomposites, ionic liquids, and deep eutectic solvents. His innovative contributions include developing sustainable methods in organic synthesis and bio-inspired eutectic melts, contributing significantly to eco-friendly chemical processes. With numerous publications in reputed journals, Prof. Rad-Moghadam continues to advance the frontiers of green chemistry and materials science.

Professional Profile: 

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Kurosh Rad-Moghadam demonstrates a remarkable profile of sustained research excellence in organic and pharmaceutical chemistry, which aligns strongly with the criteria for a “Best Researcher Award.” With an h-index of 23 and over 1,500 citations, Dr. Rad-Moghadam’s impact is evident in his innovative research contributions. His pioneering work in organic synthesis, particularly involving bioderived nanocomposites, ionic liquids, and deep eutectic solvents, has advanced sustainable chemistry methods and green solvent alternatives. His published work, represented in high-impact journals, showcases groundbreaking advancements in the synthesis and catalytic applications of ionic liquids, positioning him as a leading researcher in green chemistry.

🎓Education:

Prof. Rad-Moghadam’s academic journey began with a BSc in Pure Chemistry, followed by an MSc and PhD in Organic Chemistry at Shahid Beheshti University, Tehran. His MSc dissertation explored pseudo Mannich-type multicomponent synthesis, a versatile approach in organic chemistry. Building upon this, his PhD research delved into quinazoline derivatives, a class of compounds with pharmaceutical potential. These studies provided him with a robust understanding of organic synthesis principles and innovative approaches to multicomponent reactions. His educational background enabled him to excel in complex areas like bioderived nanocomposites and green chemistry. Through post-graduate studies, he developed expertise in areas pivotal to modern organic chemistry, including advanced NMR spectroscopy and sustainable polymer chemistry, which continue to shape his research endeavors at the University of Guilan.

🏢Work Experience:

With over two decades of teaching and research experience, Prof. Rad-Moghadam has been a central figure at the University of Guilan . He has supervised more than 40 MSc and 20 PhD theses, focusing on bioderived nanocomposites and ionic liquids, with ongoing guidance for 10 PhD and 7 MSc students. His consultancy for a polyurethane adhesive production company exemplifies his engagement in industry-relevant research, particularly in advanced materials. His teaching spans advanced organic synthesis, polymer nanotechnology, and spectroscopy, equipping students with crucial skills for research and industry. His innovative projects have gained international recognition, making him a sought-after researcher in green chemistry. Prof. Rad-Moghadam also actively contributes to scientific communities, furthering the application of eco-friendly chemicals and ionic liquids in organic synthesis.

🏅Awards:

Prof. Rad-Moghadam has received multiple accolades for his pioneering contributions to green chemistry and advanced organic synthesis. Recognized for his innovative work on ionic liquids and bioderived nanocomposites, he has established a reputation as a key figure in sustainable chemistry. His publications in high-impact journals highlight his research’s significance, leading to over 1,500 citations and an h-index of 23, reflecting the impact of his work within the scientific community. He was invited to contribute to the prestigious “Green Solvents II” volume, showcasing his expertise in sustainable solvents and ionic liquids. Prof. Rad-Moghadam’s dedication to education and research excellence has earned him respect as both a mentor and a scientist, positioning him as a leader in advancing green chemistry applications globally.

🔬Research Focus:

Prof. Rad-Moghadam’s research primarily explores eco-friendly synthetic methodologies, focusing on the design and application of bioderived nanocomposites, ionic liquids, and deep eutectic solvents. He has pioneered the use of bio-based materials to enhance the chemical and physical properties of nanoparticles, facilitating advancements in nanotechnology and sustainable materials science. His studies on ionic liquids have introduced novel catalytic properties, opening pathways for energy-efficient synthesis of organic compounds. His development of bioderived eutectic melts with unique thermal properties has potential applications in temperature-sensitive devices and selective synthesis in biosystems. With a strong commitment to green chemistry, his work addresses the environmental impact of traditional chemical processes, promoting renewable resources and reducing chemical waste. His research contributes significantly to sustainable practices in organic synthesis, offering innovative solutions for eco-friendly chemistry.

Publication Top Notes:

  1.  Starch mediates and cements densely magnetite-coating of talc, giving an efficient nano-catalyst for three-component synthesis of imidazo[1,2-c]quinazolines
    Citations: 2
  2.  Deep eutectic melt of betaine and trichloroacetic acid; its anomalous thermal behavior and green promotion effect in selective synthesis of benzimidazoles
    Citations: 1
  3.  A New Bioactive Thiazolidinone-based Azo Dye for Naked-eye Colorimetric Detection of Cyanide Ions
  4. Finely Dispersed Fe3O4 and Ag Nanoparticles Adhered by Starch Nano-layers: an Efficient Catalyst for the Synthesis of Pyrano[2,3-d]Pyrimidines
    Citations: 1
  5.  Ethyl 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate in the smiles rearrangement reaction: straightforward synthesis of amino acid derived quinolin-2(1H)-one enamines