Mahdiyeh Sheikhshoaei | Organic Chemistry | Best Researcher Award

Mrs. Mahdiyeh Sheikhshoaei | Organic Chemistry
| Best Researcher Award

Academy Researcher | Shahid Bahonar University of Kerman | Iran

Mrs. Mahdiyeh Sheikhshoaei is a researcher and laboratory expert in the Department of Mining Engineering at Shahid Bahonar University of Kerman, Iran. With a strong foundation in chemistry, electrochemistry, and nanochemistry, she has established herself as an active contributor to both theoretical and experimental sciences. Her expertise spans the synthesis of nanomaterials, photocatalysts, and coordination compounds, which she applies to catalysis, energy, and environmental remediation. She has published in internationally recognized journals, collaborating with multidisciplinary teams to address scientific and industrial challenges. Alongside her research, she has extensive teaching experience, educating students in chemistry and engineering laboratories. Her work reflects a unique balance between academic excellence, applied science, and innovation for sustainable technological development.

Professional Profile

 Scopus

Education

Mrs. Mahdiyeh Sheikhshoaei has pursued a solid academic background that combines fundamental chemistry with advanced research in nanoscience. She began her studies in chemistry at Shahid Bahonar University of Kerman, building a strong base in chemical principles, laboratory methods, and analytical techniques. She later specialized in electrochemistry, deepening her expertise in energy-related processes, electrochemical systems, and materials science. To further expand her knowledge, she advanced into nanochemistry, exploring synthesis, surface modification, and multifunctional applications of nanostructured materials. This progressive academic journey reflects her ability to integrate theory with application, equipping her with interdisciplinary expertise. Her educational achievements highlight a commitment to excellence and continuous learning, laying the foundation for her impactful contributions to research and teaching in chemistry and engineering.

Professional Experience

Mrs. Mahdiyeh Sheikhshoaei has extensive professional experience in laboratory management, teaching, and applied research. At Shahid Bahonar University of Kerman, she serves as a laboratory expert, supporting academic and research activities in the Department of Mining Engineering. Her responsibilities include overseeing chemistry and mineral processing laboratories, guiding students in practical experiments, and ensuring high-quality laboratory operations. Previously, she gained valuable expertise in soil mechanics and applied laboratory techniques, further strengthening her multidisciplinary skills. Alongside her technical work, she has taught general chemistry and laboratory courses for both chemistry and engineering students, as well as specialized courses in mineral processing, flotation, hydrometallurgy, and analysis. Her professional experience demonstrates a strong integration of teaching, research, and laboratory innovation.

Awards 

Mrs. Mahdiyeh Sheikhshoaei has earned recognition for her contributions in nanochemistry, electrochemistry, and applied catalysis through collaborative research and impactful publications. Her works in organometallic chemistry, photocatalysis, and electrochemical sensor development have been published in reputable international journals, reflecting the quality and relevance of her studies. She has established herself as a valued collaborator in multidisciplinary research, contributing to projects that address challenges in food safety, environmental remediation, and sustainable chemical synthesis. Her dedication to both education and research excellence continues to strengthen her academic profile. Although her honors are primarily reflected in scientific achievements and scholarly recognition, her growing influence positions her as a strong candidate for prestigious awards highlighting innovation and impactful research.

Research Interests 

Mrs. Mahdiyeh Sheikhshoaei research focus lies in the design, synthesis, and application of advanced nanomaterials and coordination compounds for sustainable scientific and industrial solutions. She explores nanochemistry and electrochemistry with emphasis on zeolitic imidazolate frameworks, Schiff base complexes, and uranyl-based systems. Her studies extend to photocatalysts for dye removal, electrochemical sensors for pharmaceutical detection, and catalytic systems for green synthesis. By integrating theoretical and experimental approaches, she advances multifunctional materials with environmental, energy, and biomedical relevance. Her research highlights the importance of interdisciplinary strategies that merge chemistry, engineering, and material science. Through her focus on innovation and sustainability, she contributes to addressing global challenges in clean energy, environmental protection, and advanced analytical technologies.

Publication Top Notes

  • Zeolitic imidazolate frameworks (ZIFs): Versatile materials for sensing and mitigating diverse food contaminants

    Year: 2025

Conclusion 

Mrs. Mahdiyeh Sheikhshoaei is a highly capable researcher whose contributions to nanochemistry, coordination chemistry, and environmental applications mark her as a promising candidate for the Best Researcher Award. Her strengths in interdisciplinary research, impactful publications, and academic service to students and laboratories make her stand out. By expanding her leadership in research projects, engaging in more international collaborations, and securing greater recognition through funding and honors, she can further elevate her academic influence. Her profile demonstrates clear potential for this award, reflecting both current achievements and strong future promise in advancing chemistry and applied sciences.

Kamal Kishore | Physical Organic Chemistry | Best Researcher Award

Prof. Kamal Kishore | Physical Organic Chemistry | Best Researcher Award

Eternal University | India

Prof. Kamal Kishore is a distinguished Professor of Chemistry and Biochemistry at Eternal University, Baru Sahib, Himachal Pradesh, India. With more than fourteen years of teaching experience and valuable exposure in the pharmaceutical industry, he has made impactful contributions to higher education and research in chemistry. He earned his Ph.D. in Chemistry from Barkatullah University, Bhopal, under the supervision of Prof. S.K. Upadhyaya, focusing on the physicochemical, thermal, and acoustical behavior of terbium soaps. Over the course of his career, he has held academic positions ranging from Lecturer to Professor, establishing himself as an accomplished educator, mentor, and researcher. His research has been published in reputed international and national journals, with a focus on surfactants, thermodynamics, nanotechnology, and environmental chemistry. Alongside his teaching and research, he has served as a resource person for academic bodies and delivered invited lectures at several institutions, inspiring students and fellow researchers alike.

Professional Profile

Scopus

Orcid

Education

Prof. Kamal Kishore has a strong academic background that integrates both chemistry and education. He completed his Ph.D. in Chemistry at Barkatullah University, Bhopal, where his thesis explored the thermal, acoustical, and physicochemical behavior of terbium soaps. Prior to this, he earned a Master of Science degree in Chemistry from Barkatullah University, developing a deeper understanding of advanced chemical principles and laboratory techniques. He also pursued a Bachelor of Education in Science at Jammu University, equipping himself with pedagogical training and skills essential for an academic career. His journey into higher education began with a Bachelor of Science (Non-Medical) from Himachal Pradesh University, Shimla, where he studied core subjects such as physics, chemistry, and mathematics. In addition, he qualified the Himachal Pradesh Teachers Eligibility Test (HPTET), further strengthening his academic and teaching credentials. This educational path has laid a solid foundation for his dual role as a teacher and researcher.

Professional Experience

Prof. Kamal Kishore brings extensive professional experience in academia and industry. Currently serving as Professor in the Department of Chemistry and Biochemistry at Eternal University, Baru Sahib, he has previously held positions as Associate Professor and Assistant Professor at the same institution. He has also contributed his expertise to other reputed universities and colleges in Himachal Pradesh, where he taught chemistry at both undergraduate and postgraduate levels. His academic journey began as a Lecturer in Applied Sciences, where he nurtured young learners and established himself as a dedicated educator. Beyond academia, he gained early professional exposure in the pharmaceutical industry as an IPQA Chemist at Alkem Laboratories, Baddi, where he was engaged in quality assurance processes. Over the years, he has steadily advanced in his career through diverse roles, developing expertise in teaching, research, mentoring, and curriculum development. His professional growth demonstrates his dedication to education and scientific advancement.

Awards 

Prof. Kamal Kishore has been honored with several awards and recognitions for his academic achievements, teaching excellence, and community involvement. During his early education, he earned distinction for securing top positions at the school and state levels and was awarded merit certificates for outstanding performance in examinations and extracurricular activities, including participation in the Republic Day Parade. In his academic career, he was recognized as a disciplined and dedicated faculty member at Career Point University and was honored with the Best Teacher Award for his contribution to teaching and mentoring students. At Eternal University, he received an Award of Honor for his role in a national sports championship and an Award of Appreciation during a university agricultural fair. He has also been certified as a Publons Academy Mentor, highlighting his contributions to the global research and peer review community. Collectively, these recognitions reflect his excellence in academics, research, and service.

Research Interests 

Prof. Kamal Kishore’s research interests lie primarily in physical chemistry, surfactants, thermodynamics, nanotechnology, and environmental chemistry. His doctoral research focused on the physicochemical, acoustical, and thermal behavior of terbium soaps, a theme that has inspired many of his subsequent studies. He has conducted extensive work on the self-assembly behavior of surfactants, micellization processes, and ultrasonic velocity studies, which contribute to a deeper understanding of colloid and interface science. His research further extends to the development of nanocatalysts for oxidation reactions, biosensors for the removal of heavy metals from wastewater, and green chemistry approaches for environmental sustainability. He has also contributed book chapters and collaborated with fellow researchers on interdisciplinary projects that combine theory with applied solutions. His work emphasizes innovation in addressing environmental challenges through chemistry, linking fundamental science to real-world applications in clean water technologies, sustainable nanomaterials, and environmentally friendly industrial processes.

Publication Top Notes

Title: Thermodynamics and interfacial properties for micellization of cationic surfactant with amino acid and drug at different temperatures
Year: 2024
Citations: 2

Title: Removal of Heavy Metals From Waste Water Using Natural Adsorbent—A Review
Year: 2024

Title: Ultrasonic velocity and critical micellar concentration of amino acid surfactant mixed with other surfactants at different temperatures
Year: 2019
Citations: 6

Title: Investigating oxidation of formaldehyde over Co, Ni and Cu incorporated SBA-15 mesoporous materials
Year: 2018
Citations: 11

Title: Leaf senescence: an overview
Year: 2016
Citations: 76

Conclusion 

In conclusion, Prof. Kamal Kishore is a highly accomplished academician and researcher whose career reflects excellence in teaching, research, and professional service. With qualifications in chemistry and education, he has successfully combined subject expertise with innovative pedagogy, making significant contributions to both student learning and research advancement. His recognition as a best teacher, resource person, and mentor underscores his influence in shaping the academic community, while his publications and research collaborations highlight his contributions to scientific knowledge. His work on surfactants, thermodynamics, and nanotechnology demonstrates a commitment to using chemistry as a tool for solving practical environmental and industrial challenges.

Assoc. Prof. Dr. cetin bayrak | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. cetin bayrak | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. cetin bayrak , Agri Ibrahim Cecen University , Turkey

Dr. Çetin Bayrak is an Associate Professor at Ağrı İbrahim Çeçen University, Turkey. With a strong academic foundation in organic chemistry, he holds dual Bachelor’s degrees in Chemistry and Food Engineering from Atatürk University, where he also completed his MSc and PhD in Organic Chemistry. Dr. Bayrak’s research spans natural product synthesis, bromination, and mechanistic organic chemistry, focusing on biologically active molecules and enzyme inhibition studies. He has published extensively in top-tier journals and contributed to several high-impact research projects funded by TUBITAK. Dr. Bayrak has also been a visiting scholar with the Kozlowski Group, furthering his expertise in synthesis and catalysis. In addition to his academic accomplishments, he has presented at numerous international conferences, showcasing his innovative research. An expert in NMR spectroscopy and organic compound characterization, Dr. Bayrak’s work bridges fundamental organic chemistry and applied biological research.

Professional Profile

Google Scholar

Orcid

Scopus

Summary of Suitability for Award:

Dr. Çetin Bayrak is a distinguished academic and researcher with extensive contributions to the field of organic chemistry. He has demonstrated excellence in education, holding dual bachelor’s degrees in Chemistry and Food Engineering, and advanced degrees (M.Sc. and Ph.D.) from Atatürk University. His research career includes notable positions, such as Associate Professor and Assistant Professor at Ağrı İbrahim Çeçen University, and a visiting scholar experience that highlights his global scientific engagement. Dr. Çetin Bayrak is a highly suitable candidate for the “Best Researcher Awards” due to his significant academic achievements, impactful research contributions, and demonstrated commitment to advancing the field of organic chemistry. His innovative work and dedication make him a strong contender for this prestigious recognition.

🎓Education:

Dr. Çetin Bayrak completed his education at Atatürk University, Erzurum, Turkey. He earned a BSc in Chemistry (2004–2008) and a double major in Food Engineering (2005–2009). For postgraduate studies, he pursued an MSc in Organic Chemistry (2010–2013) and a PhD in Organic Chemistry (2013–2017). His research during this time laid a robust foundation in organic synthesis, with a focus on biologically active bromophenols and reaction mechanisms. His academic journey continued as an Assistant Professor at Ağrı İbrahim Çeçen University (2017–2024) and later as an Associate Professor (2024–present). From 2021 to 2023, Dr. Bayrak was a visiting scholar with the Kozlowski Group, where he advanced his expertise in triazole phosphines and catalytic applications. This diverse and rigorous academic training has shaped him into a leading researcher in organic and mechanistic chemistry, emphasizing biologically significant compound synthesis and enzyme activity studies.

🏢Work Experience:

Dr. Çetin Bayrak has a rich professional background in organic chemistry research and teaching. He began his academic career as an Assistant Professor at Ağrı İbrahim Çeçen University in 2017, where he was promoted to Associate Professor in 2024. From 2021 to 2023, he worked as a visiting scholar with the Kozlowski Group, focusing on triazole phosphines and catalytic applications. His extensive project experience includes significant contributions to TUBITAK-funded research, such as the first synthesis of biologically active bromophenols (Project 113Z702) and the total synthesis of Onosmon analogs (Project 119R034). Dr. Bayrak has presented his work at numerous national and international conferences, sharing insights into enzyme inhibition, molecular docking, and natural product synthesis. He is proficient in advanced characterization techniques like NMR, GCMS, and HPLC, showcasing a commitment to cutting-edge research in mechanistic and applied organic chemistry.

🏅Awards: 

Dr. Çetin Bayrak has received recognition for his groundbreaking contributions to organic chemistry. He was honored with funding through prestigious TUBITAK programs, including Project 2219 for his work on triazole phosphines and their catalytic applications (2021–2023). His projects, such as the first synthesis of biologically active bromophenols and the total synthesis of Onosmon analogs, highlight his innovative approach to natural product synthesis and catalysis. Dr. Bayrak’s consistent publication of high-impact research has earned him accolades within the scientific community, and his presentations at esteemed international conferences have further distinguished his academic career. These honors underscore his dedication to advancing the field of organic chemistry, with a particular focus on biologically significant compounds and their applications.

🔬Research Focus:

Dr. Çetin Bayrak’s research centers on organic synthesis, focusing on the development of biologically active molecules and natural product derivatives. His work includes bromination reactions, mechanistic organic chemistry, and enzyme inhibition studies. Dr. Çetin Bayrak has synthesized novel bromophenol compounds, characterized their biological activities, and explored their inhibitory effects on enzymes like carbonic anhydrase and aldose reductase. He is also proficient in molecular docking studies, elucidating enzyme-ligand interactions. Recent projects include developing triazole phosphines for selective oxidative addition and investigating their catalytic properties. With expertise in advanced analytical techniques like NMR and HPLC, Dr. Çetin Bayrak’s research contributes significantly to medicinal chemistry and material science, bridging theoretical and applied organic chemistry.

Publication Top Notes:

Title: The first synthesis, carbonic anhydrase inhibition, and anticholinergic activities of some bromophenol derivatives with S including natural products
Authors: C. Bayrak, P. Taslimi, H.S. Karaman, İ. Gülçin, A. Menzek
Citations: 139
Year: 2019

Title: The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase, and…
Authors: Ç. Bayrak, P. Taslimi, İ. Gülçin, A. Menzek
Citations: 135
Year: 2017

Title: The first synthesis and antioxidant and anticholinergic activities of 1-(4, 5-dihydroxybenzyl)pyrrolidin-2-one derivative bromophenols including natural products
Authors: M. Rezai, C. Bayrak, P. Taslimi, İ. Gülçin, A. Menzek
Citations: 87
Year: 2018

Title: Synthesis and rearrangement reactions of 1,4-dihydrospiro[1,4-methanonaphthalene-9,1′-cyclopropane] derivatives
Authors: C. Bayrak, H. Senol, S. Sirtbasi, E. Sahin, A. Menzek
Citations: 19
Year: 2018

Title: Cycloaddition reaction of spiro[2.4]hepta-4,6-dien-1-ylmethanol and PTAD: a new rearrangement
Authors: H. Şenol, C. Bayrak, A. Menzek, E. Şahin, M. Karakuş
Citations: 18
Year: 2016

Title: Synthesis and photophysical properties of new pyrazolines with triphenyl and ester derivatives
Authors: A.M. Şenol, Ç. Bayrak, A. Menzek, Y. Onganer, N. Yaka
Citations: 14
Year: 2020

Title: Synthesis and aldose reductase inhibition effects of celecoxib derivatives containing pyrazole linked-sulfonamide moiety
Authors: C. Bayrak
Citations: 10
Year: 2022

Title: The first synthesis of phenylpropanoid derivative bromophenols including natural products: Formation of an indene derivative compound
Authors: C. Bayrak, A. Menzek
Citations: 8
Year: 2020

Title: 1,3‐dipolar cycloaddition reactions of the compound obtained from cyclopentadiene‐PTAD and biological activities of adducts formed selectively
Authors: M.A. Yavari, P. Taslimi, C. Bayrak, T. Taskin‐Tok, A. Menzek
Citations: 7
Year: 2022

Title: Synthesis and biological activity of some bromophenols and their derivatives including natural products
Authors: C. Bayrak, P. Taslimi, N. Kilinc, I. Gulcin, A. Menzek
Citations: 6
Year: 2023

Prof. Kurosh Rad-Moghadam | Organic Chemistry Award | Best Researcher Award

Prof. Kurosh Rad-Moghadam | Organic Chemistry Award | Best Researcher Award

Prof. Kurosh Rad-Moghadam, University of Guilan , Iran 

Prof. Kurosh Rad-Moghadam is an esteemed Professor of Organic Chemistry at the University of Guilan, Iran. With a foundation in pure and organic chemistry, he completed his BSc, MSc, and PhD at Shahid Beheshti University, Tehran, focusing on multicomponent syntheses and quinazoline derivatives. Joining the University of Guilan , Prof. Rad-Moghadam has since established himself as a leader in organic synthesis, specializing in advanced NMR spectroscopy, polymer chemistry, and nanotechnology. He has supervised over 60 MSc and PhD theses, guiding pioneering research on bioderived nanocomposites, ionic liquids, and deep eutectic solvents. His innovative contributions include developing sustainable methods in organic synthesis and bio-inspired eutectic melts, contributing significantly to eco-friendly chemical processes. With numerous publications in reputed journals, Prof. Rad-Moghadam continues to advance the frontiers of green chemistry and materials science.

Professional Profile: 

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Kurosh Rad-Moghadam demonstrates a remarkable profile of sustained research excellence in organic and pharmaceutical chemistry, which aligns strongly with the criteria for a “Best Researcher Award.” With an h-index of 23 and over 1,500 citations, Dr. Rad-Moghadam’s impact is evident in his innovative research contributions. His pioneering work in organic synthesis, particularly involving bioderived nanocomposites, ionic liquids, and deep eutectic solvents, has advanced sustainable chemistry methods and green solvent alternatives. His published work, represented in high-impact journals, showcases groundbreaking advancements in the synthesis and catalytic applications of ionic liquids, positioning him as a leading researcher in green chemistry.

🎓Education:

Prof. Rad-Moghadam’s academic journey began with a BSc in Pure Chemistry, followed by an MSc and PhD in Organic Chemistry at Shahid Beheshti University, Tehran. His MSc dissertation explored pseudo Mannich-type multicomponent synthesis, a versatile approach in organic chemistry. Building upon this, his PhD research delved into quinazoline derivatives, a class of compounds with pharmaceutical potential. These studies provided him with a robust understanding of organic synthesis principles and innovative approaches to multicomponent reactions. His educational background enabled him to excel in complex areas like bioderived nanocomposites and green chemistry. Through post-graduate studies, he developed expertise in areas pivotal to modern organic chemistry, including advanced NMR spectroscopy and sustainable polymer chemistry, which continue to shape his research endeavors at the University of Guilan.

🏢Work Experience:

With over two decades of teaching and research experience, Prof. Rad-Moghadam has been a central figure at the University of Guilan . He has supervised more than 40 MSc and 20 PhD theses, focusing on bioderived nanocomposites and ionic liquids, with ongoing guidance for 10 PhD and 7 MSc students. His consultancy for a polyurethane adhesive production company exemplifies his engagement in industry-relevant research, particularly in advanced materials. His teaching spans advanced organic synthesis, polymer nanotechnology, and spectroscopy, equipping students with crucial skills for research and industry. His innovative projects have gained international recognition, making him a sought-after researcher in green chemistry. Prof. Rad-Moghadam also actively contributes to scientific communities, furthering the application of eco-friendly chemicals and ionic liquids in organic synthesis.

🏅Awards:

Prof. Rad-Moghadam has received multiple accolades for his pioneering contributions to green chemistry and advanced organic synthesis. Recognized for his innovative work on ionic liquids and bioderived nanocomposites, he has established a reputation as a key figure in sustainable chemistry. His publications in high-impact journals highlight his research’s significance, leading to over 1,500 citations and an h-index of 23, reflecting the impact of his work within the scientific community. He was invited to contribute to the prestigious “Green Solvents II” volume, showcasing his expertise in sustainable solvents and ionic liquids. Prof. Rad-Moghadam’s dedication to education and research excellence has earned him respect as both a mentor and a scientist, positioning him as a leader in advancing green chemistry applications globally.

🔬Research Focus:

Prof. Rad-Moghadam’s research primarily explores eco-friendly synthetic methodologies, focusing on the design and application of bioderived nanocomposites, ionic liquids, and deep eutectic solvents. He has pioneered the use of bio-based materials to enhance the chemical and physical properties of nanoparticles, facilitating advancements in nanotechnology and sustainable materials science. His studies on ionic liquids have introduced novel catalytic properties, opening pathways for energy-efficient synthesis of organic compounds. His development of bioderived eutectic melts with unique thermal properties has potential applications in temperature-sensitive devices and selective synthesis in biosystems. With a strong commitment to green chemistry, his work addresses the environmental impact of traditional chemical processes, promoting renewable resources and reducing chemical waste. His research contributes significantly to sustainable practices in organic synthesis, offering innovative solutions for eco-friendly chemistry.

Publication Top Notes:

  1.  Starch mediates and cements densely magnetite-coating of talc, giving an efficient nano-catalyst for three-component synthesis of imidazo[1,2-c]quinazolines
    Citations: 2
  2.  Deep eutectic melt of betaine and trichloroacetic acid; its anomalous thermal behavior and green promotion effect in selective synthesis of benzimidazoles
    Citations: 1
  3.  A New Bioactive Thiazolidinone-based Azo Dye for Naked-eye Colorimetric Detection of Cyanide Ions
  4. Finely Dispersed Fe3O4 and Ag Nanoparticles Adhered by Starch Nano-layers: an Efficient Catalyst for the Synthesis of Pyrano[2,3-d]Pyrimidines
    Citations: 1
  5.  Ethyl 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate in the smiles rearrangement reaction: straightforward synthesis of amino acid derived quinolin-2(1H)-one enamines