Dr. Kàshinath Lellala | Materials Chemistry | Best Researcher Award

Dr. Kàshinath Lellala | Materials Chemistry | Best Researcher Award

Dr. Kàshinath Lellala , Materials Chemistry , University of Mysore , India

Dr. Kashinath Lellala is an accomplished materials scientist with expertise in advanced functional materials for energy and environmental applications. With over 12 years of research experience and 10 years of teaching, he has made significant contributions to materials fabrication, catalysis, and battery technology. His research spans heterojunction materials, electrocatalysts, and Li-ion battery components. Dr. Lellala has held postdoctoral positions at esteemed institutions such as Xavier University (USA), Luleå University of Technology (Sweden), and Pandit Deendayal Petroleum University (India). He has also served as a lecturer at Xavier University, JSS University, and Royal University of Bhutan. His interdisciplinary approach integrates computational studies with experimental research, enhancing his contributions to materials science. He actively collaborates with global researchers and has served on editorial boards of reputed journals. His work has been recognized through multiple awards, including the Eminent Educator Award and prestigious fellowships.

Professional Profile : 

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Kashinath Lellala is exceptionally qualified for “Best Researcher Awards” due to his extensive and diverse contributions to materials science and engineering. With over 12 years of research experience and 10 years of teaching, his work spans advanced functional materials, photocatalysis, and lithium-ion battery technology. His innovative approaches in synthesizing heterojunction materials, semiconductor-supported catalysts, and graphene-based nanomaterials have significantly advanced the fields of energy and environmental applications. His global research stints—at institutions such as Xavier University, Luleå University of Technology, and Pandit Deendayal Petroleum University—underscore his ability to collaborate across borders and disciplines. Additionally, his editorial board roles, numerous publications, and prestigious awards, including the Caryl Trigger Research Fellowship and Eminent Educator Award, reflect both his academic rigor and leadership.

🎓Education:

Dr. Kashinath Lellala earned his Ph.D. in Materials Science from the University of Mysore, India, in 2019, under the guidance of Prof. K. Byrappa, focusing on hybrid metal oxide/metal sulfide-graphene oxide nanocomposites for energy and environmental applications. He completed his M.Phil. in Physics (Thin Films and Nanotechnology) from Alagappa University, India, in 2013, where he synthesized and characterized single-layered graphene via chemical exfoliation. His M.Sc. in Physics, with a specialization in electronics, was awarded by Kakatiya University, Warangal, Telangana, India, in 2007. Additionally, he holds a Diploma in Embedded Technology from Kionia Software Institution, Pune University, and a Postgraduate Diploma in Computer Applications (PGDCA) from Andhra Pradesh Electronics Limited (APEL). His academic background is complemented by a Certificate in Typing (English Lower Grade), reflecting his diverse skill set in computational work and experimental physics.

🏢Work Experience:

Dr. Lellala has 12 years of research and 10 years of teaching experience across prestigious institutions worldwide. He served as a Postdoctoral Fellow & Lecturer at Xavier University of Louisiana (2022–2023), working on semiconductor and heterojunction materials for batteries, 3D bio-inkjet printing, and fuel cells. At Lulea University of Technology, Sweden (2020–2022), he contributed to water remediation research through semiconductor-supported photocatalysis. Earlier, he was a Research Associate at Pandit Deendayal Petroleum University (2019–2020), focusing on silicon nanoparticle-based anode materials for lithium-ion batteries. His Ph.D. research (2014–2019) at the University of Mysore involved fabricating hybrid metal oxide/sulfide-graphene oxide nanocomposites for energy applications. Additionally, he has held teaching positions at JSS University, Bhutan Royal University, Iringa University (Tanzania), and New Science PG College, delivering lectures on physics, materials science, and nanotechnology.

🏅Awards: 

Dr. Kashinath Lellala has received multiple prestigious awards in recognition of his contributions to materials science and engineering. He was awarded the Caryl Trigger Research Foundation Postdoctoral Fellowship at Lulea University of Technology in 2020. He also received the Eminet Educator Award-2020 from the Forum of Interdisciplinary Research in Mathematical Sciences (FIRMS), India. His research excellence was recognized with a Certificate of Appreciation for Reviewing by Elsevier’s Journal of Cleaner Production (2021). Additionally, he was a Postdoctoral Fellow at the Department of Science & Technology, India (2019), and an International Visiting Research Student at the University of South Australia (2017). His research potential was acknowledged with the Senior Research Fellowship (SRF) at the University of Mysore (2017) and Junior Research Fellowship (JRF) by the Department of Science & Technology (2014).

🔬Research Focus:

Dr. Kashinath Lellala’s research is centered on advanced functional materials for energy and environmental applications. His expertise spans photo- and electro-catalysis, heavy metal removal, and organic pollutant degradation through semiconductor-supported photocatalysts. His work on heterojunction materials includes developing fuel cell electrodes (HER, OER, ORR) and lithium-ion battery anode/cathode materials using metal oxide/metal sulfide composites. He specializes in graphene-based nanomaterials, exploring the fabrication of porous graphene sheets doped with boron and nitrogen for enhanced electrochemical performance. Additionally, he has worked extensively on silicon-based anode materials for lithium-ion batteries, including the innovative synthesis of graphene from camphor. His research extends to microwave-assisted hydrothermal processing for fabricating high-efficiency heterostructures. His contributions in water remediation, particularly through photo-electrochemical oxidation, demonstrate his commitment to sustainable and green chemistry solutions for environmental challenges.

Publication Top Notes:

Fe₃O₄ nanoparticles decorated on N-doped graphene oxide nanosheets for elimination of heavy metals from industrial wastewater and desulfurization

Ceria Boosting on In Situ Nitrogen-Doped Graphene Oxide for Efficient Bifunctional ORR/OER Activity

Citations: 7

Sol-gel mediated microwave synthesis of Fe₃O₄ nanoparticles decorated on N-doped graphene oxide nanosheets: An excellent material for removal of heavy metals, organic pollutants, and desulfurization

Ceria boosting on in-situ nitrogen-doped graphene oxide for efficient bifunctional ORR/OER activity

Electrochemical Deposition of Si Nano-spheres from Water Contaminated Ionic Liquid at Room Temperature: Structural Evolution and Growth Mechanism

One-pot microwave synthesis of SnSe and Lanthanum doped SnSe nanostructure with direct Z scheme pattern for excellent photodegradation of organic pollutants

Microwave-hydrothermal synthesis of copper sulphide nanorods embedded on graphene sheets as an efficient electrocatalyst for excellent hydrogen evolution reaction

Sulphur Embedded On In-Situ Carbon Nanodisc Decorated On Graphene Sheets For Efficient Photocatalytic Activity And Capacitive Deionization Method For Heavy Metal Removal

Microwave-Assisted Facile Hydrothermal Synthesis of Fe₃O₄–GO nanocomposites for the Efficient Bifunctional Electrocatalytic Activity of OER/ORR

Role of surface passivation on the development of camphor-based Graphene/SiNWAs Schottky diode