Dr. Hyun Jung Lee | Materials chemistry | Best Researcher Award

Dr. Hyun Jung Lee | Materials chemistry | Best Researcher Award

Dr. Hyun Jung Lee, Materials chemistry, Korea Institute of Fusion Energy, South Korea

Dr. Hyunjung Lee is a distinguished physicist and Principal Investigator at the Korea Institute of Fusion Energy (KFE) in Daejeon, South Korea. With a Ph.D. in Physics from Kyungpook National University, she has over two decades of research expertise in superconducting magnet systems, cryogenics, and fusion technology. She has made vital contributions to flagship projects like KSTAR, K-DEMO, and ITER, leading multi-million-dollar development efforts. A committed advocate for women in STEM, she represents Korea at international physics conferences and plays key roles in national scientific committees. Dr. Lee has authored over 60 peer-reviewed publications and continues to lead innovative research on high-field magnet design, quench analysis, and thermo-hydraulics. Her contributions significantly advance global nuclear fusion efforts, showcasing both technical excellence and visionary leadership.

Professional Profile :         

Scopus 

Summary of Suitability for Award:

Dr. Hyunjung Lee is a highly accomplished researcher with a robust and diverse academic and professional background in fusion energy and superconductivity. She has extensive experience in superconducting magnet systems and cryogenic technologies, leading significant projects like the development of superconducting magnets for the K-DEMO and KSTAR fusion reactors. As a principal investigator at the Korea Institute of Fusion Energy (KFE), her work involves cutting-edge research in fusion physics, including the design, analysis, and operational stability of superconducting magnets. Dr. Hyunjung Lee is undoubtedly a suitable candidate for the “Best Researcher Award”, due to her impactful research, leadership in large-scale international projects, and her contributions to the advancement of fusion energy technology. Her innovative work in superconducting magnet systems has advanced both scientific understanding and practical applications in fusion energy, making her an outstanding candidate for this prestigious award.

🎓Education:

Dr. Hyunjung Lee completed her Ph.D. in Physics at Kyungpook National University, Daegu, South Korea, in 2003. Her doctoral research focused on the behavior of materials in extreme magnetic fields and low temperatures, setting the stage for her future work in superconducting systems. Prior to that, she earned her B.S. in Physics from Daegu University in 1997. Her strong academic foundation enabled her to transition seamlessly into high-level research, with early postdoctoral training at the Korea Basic Science Institute (KBSI). Dr. Lee’s educational background reflects a deep commitment to fundamental physics, with an application-driven focus on fusion energy systems and superconducting technologies. Her continuous engagement with advanced analytical and cryogenic systems throughout her education laid the groundwork for her leadership in magnet design and thermo-hydraulic simulation for nuclear fusion applications.

🏢Work Experience:

Dr. Lee began her career as a Postdoctoral Associate (2003–2006) at the Korea Basic Science Institute (KBSI), where she researched material properties under extreme conditions. She then joined the Korea Institute of Fusion Energy (KFE) in 2006, advancing from Senior Researcher to Principal Investigator. From 2006–2013, she focused on thermo-hydraulic and quench analysis for KSTAR and K-DEMO superconducting magnets. Between 2013–2015, she contributed to cryogenic system design for the RAON project. From 2016–2018, she also served as an Associate Professor at the University of Science and Technology (UST), teaching accelerator and fusion physics. Her key achievements include designing 16T superconducting magnets, establishing experimental facilities (~$30 million), and collaborating with global fusion initiatives such as ITER, ENEA, and General Atomics. She is currently a leading figure in Korea’s national fusion reactor (K-DEMO) magnet program and a central voice in international fusion technology forums.

🏅Awards: 

While Dr. Hyunjung Lee’s CV does not list specific named awards, her achievements are reflected through her prestigious roles, international collaborations, and scientific committee appointments. She serves as an Executive Officer in the Korean Physical Society’s Academic and Women’s Committees (2021–present), showcasing her leadership in Korea’s physics community. She has been a Mentoring Fellow of the Korea Foundation for Women in Science and Technology (2008–2020), guiding the next generation of scientists. Her appointment to the Peaceful Unification Advisory Council (2015–2017) reflects national recognition beyond science. Dr. Lee frequently represents Korea in international conferences, including the International Conference on Women in Physics and the Magnet Technology Conference, evidencing her global stature. Her research is highly regarded in fusion communities and continues to influence policies and project planning at the international level. Her awards lie in the transformative impact of her research and leadership across nuclear fusion initiatives.

🔬Research Focus:

Dr. Hyunjung Lee’s research is centered on superconducting magnet systems and cryogenic thermo-hydraulics for nuclear fusion reactors. Her core contributions span magnet design, quench analysis, and the establishment of fusion magnet experimental infrastructure. A key architect of Korea’s K-DEMO and KSTAR fusion magnet programs, she focuses on developing high-field (up to 16T) superconducting magnets and advanced quench protection mechanisms. Her work includes detailed thermo-hydraulic modeling, AC loss analysis, and cooling loop simulations to ensure cryogenic stability. She also leads international collaboration on magnet technologies with partners like ITER, ENEA, and General Atomics. Dr. Lee has also contributed to the RAON rare isotope accelerator project, analyzing cryogenic systems for linear accelerators. Her research directly advances fusion energy’s feasibility, offering safe, efficient, and scalable superconducting systems for future reactors. She is a thought leader in fusion technology development, particularly in enabling long-term stability of superconducting devices under high-stress operations.

Publication Top Notes:

Design Updates of a Fusion Superconducting Conductor Test Facility Magnet (SUCCEX)

Assessment of KSTAR Nb₃Sn Superconducting Magnet Property After Long-Term Operation Since 2008

Effect of Flow Imbalance on the Operational Performance of the KSTAR PF1UL Magnets

Design Updates and Thermo-Hydraulic Analysis of K-DEMO CS Magnets

Thermo-Hydraulic Analysis of the KSTAR PF Cryogenic Loop Using SUPERMAGNET Code

Citations: 1​

 

Athanassios Philippopoulos | Inorganic Chemistry | Best Researcher Award

Assoc Prof Dr. Athanassios Philippopoulos | Inorganic Chemistry | Best Researcher Award

Associate Professor at National and Kapodistrian University of Athens/Chemistry Department, Greece

Athanassios Philippopoulos is an Associate Professor in the Laboratory of Inorganic Chemistry at the National and Kapodistrian University of Athens. His research spans organometallic and coordination chemistry, with a focus on applying nanotechnologies to energy and environmental challenges. Philippopoulos has made significant contributions to renewable energy technologies, particularly dye-sensitized solar cells, and bio-inorganic chemistry, including metal-based drugs. His academic career is marked by substantial publications and active involvement in advancing both fundamental and applied chemistry.

Author Metrics

Scopus Profile

ORCID Profile

Philippopoulos has an extensive scholarly impact, with over 1300 citations according to Web of Science (H-index 18) and more than 1520 citations on Google Scholar (H-index 19). His work reflects a strong presence in the fields of organometallic and coordination chemistry, with significant influence on both theoretical and practical aspects of these disciplines.

Education

Philippopoulos obtained his Bachelor of Science in Chemistry from the University of Ioannina in 1992. He continued his studies at the same institution, completing his Ph.D. in Inorganic-Organometallic Chemistry in 1997. His advanced education provided a robust foundation for his subsequent research and academic career.

Research Focus

Philippopoulos’s research encompasses several key areas: organometallic and coordination chemistry, nanotechnologies for energy and environmental applications, and bio-inorganic chemistry. His work in renewable energy resources includes the development of dye-sensitized solar cells. Additionally, he explores metal-based drugs and their applications in medicine, alongside catalysis and general inorganic chemistry.

Professional Journey

Philippopoulos began his professional career with postdoctoral research at the University of Ioannina and Humboldt University of Berlin. He then served as a Research Associate at the Institute of Physical Chemistry, NCSR “Demokritos,” before joining the National and Kapodistrian University of Athens as an Associate Professor in 2021. His career trajectory reflects a blend of rigorous research and impactful academic roles.

Honors & Awards

Throughout his career, Philippopoulos has received several prestigious awards and fellowships, including those from the Institute of Physical Chemistry, the IKYDA Fellowship, and various scholarships from the French Government and Erasmus Program. These accolades highlight his exceptional contributions to the field of chemistry and his commitment to advancing scientific knowledge.

Publications Noted & Contributions

Philippopoulos has authored over 50 peer-reviewed journal articles and delivered more than 65 conference presentations. His work includes one invited book chapter and numerous contributions to academic journals as an editor and reviewer. His publications are noted for their impact on organometallic chemistry, nanotechnology, and renewable energy research.

Ruthenium <i>p</i>-Cymene Complexes Incorporating Substituted Pyridine–Quinoline-Based Ligands: Synthesis, Characterization, and Cytotoxic Properties

Publication Details:
Journal: Molecules
Date: July 2024
DOI: 10.3390/molecules29133215
Role: Author
Contributors: Afroditi Kokkosi, Elpida Garofallidou, Nikolaos Zacharopoulos, Nikolaos Tsoureas, Konstantina Diamanti, Nikolaos S. Thomaidis, Antigoni Cheilari, Christina Machalia, Evangelia Emmanouilidou, Athanassios Philippopoulos

This article explores the synthesis and characterization of ruthenium <i>p</i>-cymene complexes with substituted pyridine-quinoline ligands. It examines their potential cytotoxic properties, contributing to the field of metal-based anticancer agents.

Anti-Inflammatory and Antithrombotic Potential of Metal-Based Complexes and Porphyrins

Publication Details:
Journal: Compounds
Date: June 2024
DOI: 10.3390/compounds4020023
Role: Author
Contributors: Alexandros Tsoupras, Sofia Pafli, Charilaos Stylianoudakis, Kalliopi Ladomenou, C.A. Demopoulos, Athanassios Philippopoulos

This study evaluates the anti-inflammatory and antithrombotic activities of various metal-based complexes and porphyrins. The findings offer insights into their therapeutic potential for cardiovascular and inflammatory diseases.

First-Row Transition Metal Complexes Incorporating the 2-(2′-pyridyl)quinoxaline Ligand (pqx), as Potent Inflammatory Mediators: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin

Publication Details:
Journal: Molecules
Date: October 2023
DOI: 10.3390/molecules28196899
Role: Author
Contributors: Antigoni Margariti, Vasiliki D. Papakonstantinou, George Stamatakis, C.A. Demopoulos, Christina Machalia, Evangelia Emmanouilidou, Gregor Schnakenburg, Maria-Christina Nika, Nikolaos S. Thomaidis, Athanassios Philippopoulos

The paper focuses on the cytotoxic effects and biological activities of first-row transition metal complexes with 2-(2′-pyridyl)quinoxaline ligands. It investigates their role as inflammatory mediators and their impact on platelet-activating factors and thrombin.

Tin(II) and Tin(IV) Complexes Incorporating the Oxygen Tripodal Ligands [(<i>η</i><sup>5</sup>-C<sub>5</sub>R<sub>5</sub>)Co{P(OEt)<sub>2</sub>O}<sub>3</sub>]<sup>−</sup>, (R = H, Me; Et = -C<sub>2</sub>H<sub>5</sub>) as Potent Inflammatory Mediator Inhibitors: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin

Publication Details:
Journal: Molecules
Date: February 2023
DOI: 10.3390/molecules28041859
Role: Author
Contributors: Alexandros Kalampalidis, Artemis Damati, Demetrios Matthopoulos, Alexandros Tsoupras, C.A. Demopoulos, Gregor Schnakenburg, Athanassios Philippopoulos

This article investigates the cytotoxic properties and biological activities of tin(II) and tin(IV) complexes with oxygen tripodal ligands. It highlights their effectiveness as inhibitors of inflammatory mediators like PAF and thrombin.

Sterically Demanding Pyridine-Quinoline Anchoring Ligands as Building Blocks for Copper(<scp>i</scp>)-Based Dye-Sensitized Solar Cell (DSSC) Complexes

Publication Details:
Journal: Dalton Transactions
Date: 2022
DOI: 10.1039/d2dt02382b
Role: Author
Contributors: Anastasios Peppas, Demetrios Sokalis, Dorothea Perganti, Gregor Schnakenburg, Polycarpos Falaras, Athanassios Philippopoulos

This publication discusses the use of sterically demanding pyridine-quinoline ligands in designing copper(I)-based dye-sensitized solar cells. It contributes to the development of advanced materials for solar energy applications.

Research Timeline

Philippopoulos’s research career includes significant milestones, such as his postdoctoral studies from 1998 to 2003, his role as a Research Associate from 2003 to 2006, and his tenure as an Associate Professor since 2021. His research grants and projects reflect ongoing advancements in solar cell technology, chelation methods, and innovative materials.

Collaborations and Projects

Philippopoulos has been involved in various collaborative research projects, including those funded by the Hellenic Foundation for Research and Innovation and the General Secretariat for Research and Technology. His work has spanned areas like nanocrystalline solar cells and innovative cleaning methods for museum artifacts, showcasing his collaborative efforts in advancing chemistry and technology.

Strengths of the Best Researcher Award for Athanassios Philippopoulos

  1. Significant Scholarly Impact: Philippopoulos has made notable contributions to the fields of organometallic and coordination chemistry, with over 1300 citations on Web of Science and 1520 on Google Scholar. This indicates a strong influence and recognition of his work within the scientific community.
  2. Diverse Research Areas: His research spans several crucial areas, including renewable energy (dye-sensitized solar cells), bio-inorganic chemistry (metal-based drugs), and nanotechnologies. This broad focus demonstrates his versatility and impact across multiple subfields of chemistry.
  3. High-Quality Publications: Philippopoulos has published over 50 peer-reviewed journal articles and contributed to significant research outputs, such as studies on ruthenium complexes, metal-based drugs, and copper(I)-based dye-sensitized solar cells. This reflects his commitment to advancing scientific knowledge and addressing pressing challenges.
  4. Awards and Recognition: The recognition Philippopoulos has received, including the Best Researcher Award, highlights his exceptional contributions and the esteem in which he is held by the academic and research communities. His past honors from various prestigious institutions further validate his achievements.
  5. Active Academic Engagement: Philippopoulos’s role in numerous conference presentations and his involvement as an editor and reviewer for academic journals show his active engagement in the scientific community. This participation underscores his dedication to both research and the dissemination of knowledge.

Areas for Improvement

  1. Broader Research Collaborations: While Philippopoulos has been involved in several collaborative projects, expanding his network to include more international and interdisciplinary collaborations could enhance the scope and impact of his research.
  2. Interdisciplinary Integration: There is an opportunity to further integrate his research with other scientific disciplines, such as materials science or environmental engineering, to address complex challenges from multiple perspectives.
  3. Increased Public Outreach: Enhancing efforts to communicate his research findings to the general public and stakeholders outside the academic community could increase the societal impact and relevance of his work.
  4. Funding and Grants: While Philippopoulos has been involved in research funded by various grants, seeking additional funding opportunities or leading larger-scale, multi-institutional projects could provide more resources for ambitious research goals.
  5. Educational Contributions: Developing and incorporating innovative teaching methods or educational programs related to his research areas could further benefit students and early-career researchers, enriching the academic environment at his institution.

Conclusion

Athanassios Philippopoulos has made substantial contributions to inorganic chemistry, particularly in the areas of organometallic chemistry, renewable energy, and bio-inorganic chemistry. His extensive publication record, significant citations, and numerous awards reflect his outstanding research accomplishments and impact on the field. While there are areas for potential improvement, such as broadening collaborations and enhancing public outreach, his achievements and ongoing contributions position him as a leading figure in his field. The Best Researcher Award is a testament to his dedication and excellence in advancing scientific knowledge and addressing global challenges through chemistry.