Assoc. Prof. Dr. Ji-Chi Liu | Electrochemistry | Best Researcher Award

Assoc. Prof. Dr. Ji-Chi Liu | Electrochemistry | Best Researcher Award

Assoc. Prof. Dr. Ji-Chi Liu ,  Electrochemistry , Associate Professor at Liaoning University, China

Dr. Ji-Chi Liu is an accomplished Associate Professor at the College of Chemistry, Liaoning University, China. He received his Ph.D. in 2022 from the same institution and rapidly progressed to a faculty position due to his exemplary research in advanced energy materials. His work focuses on the rational design and controlled synthesis of novel materials for electrochemical energy storage, particularly aqueous ion batteries and supercapacitors. In just a few years, Dr. Liu has published multiple high-impact papers in reputed journals and filed five patents, establishing himself as a promising researcher in the field. With an innovative mindset and deep scientific acumen, he has led three funded research projects and continues to collaborate across institutions. His scientific contributions are aligned with sustainable energy solutions, making a significant impact in materials chemistry and energy technology. Dr. Liu is a committed educator and researcher, dedicated to advancing the frontier of clean energy systems.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Ji-Chi Liu holds a Ph.D. in Chemistry from Liaoning University (2022) and currently serves as an Associate Professor at the same institution. His rapid academic progression within three years of receiving his doctorate demonstrates exceptional promise and capability. He has published five high-impact SCI-indexed papers in leading journals such as Nano Energy, Journal of Materials Chemistry A, and Energy & Environmental Materials, all within a short span. His focus on electrochemical energy storage, particularly aqueous ion batteries and supercapacitors, addresses global priorities in sustainable and safe energy technologies. This aligns well with international goals for climate action and clean energy. With five patents filed, his work exhibits a clear translational value from lab-scale innovation to real-world applications, reinforcing the relevance of his research beyond academia. Dr. Liu has led three funded research projects, evidencing his capability in securing competitive funding and managing research teams effectively. Dr. Ji-Chi Liu is highly suitable for the “Best Researcher Award”. His outstanding publication record, innovation through patents, impactful research in sustainable energy, and growing academic leadership present a compelling case for recognition. Despite being early in his career, his trajectory clearly indicates a strong and consistent commitment to high-quality research with both academic and societal relevance.

🎓Education:

Dr. Ji-Chi Liu pursued all his higher education at Liaoning University, a prestigious institution in China. He earned his Ph.D. in Chemistry in 2022, specializing in the design and synthesis of advanced materials for electrochemical applications. During his doctoral research, he developed deep expertise in the electrochemical behavior of aqueous ion battery systems and supercapacitors. His academic journey is marked by a strong foundation in both theoretical understanding and hands-on experimental techniques in materials science and energy storage. His research during his Ph.D. led to several publications in SCI-indexed journals and laid the groundwork for postdoctoral innovations. Dr. Liu has also continuously upgraded his academic qualifications through participation in workshops, scientific conferences, and research collaborations. His education has provided him with a multidisciplinary skill set spanning solid-state chemistry, electrochemistry, and nanomaterials, enabling him to contribute meaningfully to the field of clean and sustainable energy technologies.

🏢Work Experience:

Dr. Ji-Chi Liu currently serves as an Associate Professor at the College of Chemistry, Liaoning University. Since completing his Ph.D. in 2022, he has rapidly grown into a leadership role, heading several research initiatives focused on energy storage systems. Dr. Liu has successfully led three major research projects, supported by national or institutional grants. In addition to his research contributions, he plays a key role in mentoring undergraduate and graduate students and actively contributes to curriculum development in electrochemistry and materials science. His teaching is enriched by his cutting-edge research experience, enabling him to bridge theory and application in classroom and laboratory settings. Dr. Liu also participates in academic reviewing and has contributed to several international conferences. With his academic rigor and leadership qualities, he has established strong research collaborations and is an active member of the global electrochemical materials research community.

🏅Awards: 

Dr. Ji-Chi Liu’s innovative research in electrochemical energy storage has garnered significant recognition. He has been nominated for the Best Researcher Award by the International Chemistry Scientist Awards in 2025, reflecting the global appreciation of his scientific contributions. Despite being in the early stages of his academic career, Dr. Liu has already published in prestigious journals like Nano Energy and Journal of Materials Chemistry A, with first or corresponding author roles, demonstrating leadership in his field. He has filed five patents, underscoring the originality and applicability of his research. His projects have also received institutional funding, a testament to the confidence placed in his work by the scientific and academic community. As a rising star in materials chemistry and clean energy research, Dr. Liu’s accolades affirm his commitment to impactful research and innovation, positioning him as a significant contributor to future energy technologies.

🔬Research Focus:

Dr. Ji-Chi Liu’s research is centered on electrochemical energy storage devices, particularly aqueous ion batteries and supercapacitors. His work focuses on the rational design and controlled synthesis of advanced electrode materials with high stability, efficiency, and energy density. He employs techniques in nanostructure engineering and electrochemical characterization to develop sustainable energy materials. By integrating principles from materials science and electrochemistry, Dr. Liu seeks to overcome challenges in scalability, safety, and cost-efficiency in energy storage technologies. His recent projects involve the development of environmentally friendly, high-performance aqueous-based systems, which are safer and more sustainable than traditional lithium-ion batteries. Dr. Liu’s research outputs include innovative electrode architectures that enhance charge/discharge cycles, energy retention, and conductivity. He is also exploring hybrid systems that combine the benefits of batteries and supercapacitors. His work contributes significantly to advancing clean energy technologies that can support the transition to a greener and more sustainable future.

Publication Top Notes:

1. Current Collectors for Supercapacitors: Objectives, Modification Methods and Challenges

2. P-n Junction Built-in Electric Field and Electrochemical In-situ Intercalation Enabled Ultra-Stable and High-Energy Ammonium-Ion Storage

3. Integrated Electrode-Electrolyte Optimization to Manufacture a Real-Life Applicable Aqueous Supercapacitor with Record-Breaking Lifespan

4. Aqueous Supercapacitor with Ultrahigh Voltage Window Beyond 2.0 Volt

5. Structural Engineering to Maintain the Superior Capacitance of Molybdenum Oxides at Ultrahigh Mass Loadings

 

 

 

Assoc. Prof. Dr. ROSHAN NAZIR | Electrochemistry | Chemical Environmental Award

Assoc. Prof. Dr. ROSHAN NAZIR | Electrochemistry | Chemical Environmental Award

Assoc. Prof. Dr. ROSHAN NAZIR | Associate Professor at Department of Chemistry, Poornima University, Jaipur, Rajasthan, India

Dr. Roshan Nazir is a distinguished researcher in nanomaterials, electrocatalysis, and coordination chemistry, currently serving as an Assistant Professor at Guru Nanak Institute of Technology, Hyderabad. He has previously worked as a DST-SERB National Postdoctoral Fellow at IIT Delhi, Research Associate at IIT Kharagpur, and Postdoctoral Fellow at Bilkent University (Turkey) and Qatar University. His Ph.D. from BITS Pilani focused on metal and metal oxide nanoparticles for electrocatalysis. His groundbreaking research includes hydrogen and oxygen evolution reactions, CO₂ reduction, and photovoltaic applications. With several high-impact publications, he has significantly contributed to energy materials and catalysis. Dr. Nazir has also held key administrative roles, including IIC and R&D Coordinator, demonstrating leadership in academic research and innovation. His expertise, coupled with prestigious fellowships and awards, establishes him as a leading scientist in sustainable energy research.

Professional Profile :                       

Google Scholar

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Roshan Nazir is highly suitable for the “Chemical Environmental Award” due to his extensive research in nanomaterials, electrocatalysis, and sustainable energy applications. His work focuses on developing efficient and cost-effective catalysts for clean energy production, hydrogen evolution reactions (HER), oxygen evolution reactions (OER), and CO₂ reduction, which align with the principles of green chemistry and environmental sustainability. His contributions to renewable energy solutions, pollution mitigation, and the reduction of harmful industrial emissions make him an excellent candidate for this award. Dr. Nazir’s research also includes MXene-based catalysts for hydrogen energy, electrodeposited Cu₂O/ZnO heterojunctions for solar applications, and the use of transition metal catalysts in electrochemical reactions, all aimed at minimizing environmental impact. His work bridges fundamental chemistry and industrial applications, ensuring a cleaner and more sustainable future. His international postdoctoral fellowships, leadership in research projects, and high-impact publications further highlight his commitment to advancing environmentally friendly chemical technologies.

🎓Education:

Dr. Roshan Nazir earned his Doctor of Philosophy (Ph.D.) in Chemistry from Birla Institute of Technology and Science (BITS), Pilani, India (2013–2019). His research focused on the synthesis and characterization of metal and metal oxide nanoparticles for electrocatalytic oxygen and hydrogen evolution reactions. His thesis was submitted on May 17, 2018, and awarded on February 28, 2019. Prior to this, he completed his Master of Science (M.Sc.) in Chemistry from Jamia Millia Islamia, India (2010–2012), where he gained expertise in advanced inorganic, organic, and physical chemistry. His academic journey laid a strong foundation in nanomaterials, catalysis, and electrochemistry, which he further explored during his postdoctoral research. His academic excellence and deep understanding of materials chemistry have been instrumental in his contributions to electrocatalysis, hydrogen production, and sustainable energy solutions.

🏢Work Experience:

Dr. Roshan Nazir is currently an Assistant Professor at Guru Nanak Institute of Technology, Hyderabad, India, since October 2023. He has extensive postdoctoral experience, having worked as a DST-SERB National Postdoctoral Fellow (NPDF) at the Indian Institute of Technology (IIT) Delhi from 2022 to 2023. Prior to this, he was a Research Associate at the Department of Metallurgical and Materials Engineering, IIT Kharagpur (2020–2021), where he worked on cutting-edge materials research. He also held prestigious international positions, including a Postdoctoral Fellowship (TÜBİTAK) at Bilkent University, Ankara, Turkey (2019–2020) and a Postdoctoral Fellow (Industrial Project – Total) at Qatar University, Doha, Qatar (2018–2019). His vast experience spans nanomaterials, electrocatalysis, hydrogen energy, and renewable energy applications. His interdisciplinary expertise and research collaborations have significantly contributed to advancements in materials chemistry and sustainable energy.

🏅Awards: 

Dr. Roshan Nazir has received several prestigious fellowships and awards for his outstanding research contributions. He was awarded the DST-SERB National Postdoctoral Fellowship (NPDF), serving as the Principal Investigator (PI) of the project, which highlights his leadership in scientific research. He also received the TÜBİTAK Fellowship from Turkey, a highly competitive international postdoctoral fellowship, recognizing his expertise in materials chemistry and catalysis. During his Ph.D., he was a Junior Research Fellow (JRF) under a Department of Science and Technology (DST)-sponsored project, further demonstrating his early excellence in research. His work has been published in high-impact journals, and his contributions to electrocatalysis, hydrogen production, and nanomaterials synthesis have earned him international recognition. Additionally, his administrative roles, such as serving as the IIC and R&D Coordinator at Guru Nanak Institute of Technology, showcase his dedication to research and academic leadership.

🔬Research Focus:

Dr. Roshan Nazir’s research primarily focuses on the synthesis and characterization of metal and metal oxide nanoparticles for electrocatalysis, hydrogen evolution reactions (HER), and oxygen evolution reactions (OER). His work aims to develop highly efficient, cost-effective, and stable catalysts for sustainable energy applications. He has explored MXene-based catalysts for ecological hydrogen energy generation, investigated electrodeposited Cu2O/ZnO heterojunctions for photovoltaic applications, and studied gadolinium telluride for oxygen evolution and reduction reactions. His research extends to CO2 reduction, methanol oxidation, and nitro-compound reduction, contributing to green energy solutions. His expertise in galvanic exchange synthesis, electrocatalytic nitrogen reduction, and carbon nitride-supported catalysts has led to the development of innovative materials for energy conversion and storage. Through his work, he aims to bridge the gap between fundamental nanomaterials research and practical applications in renewable energy and sustainable chemistry.

Publication Top Notes:

Synthesis of Monometallic (Au and Pd) and Bimetallic (AuPd) Nanoparticles Using Carbon Nitride (C3N4) Quantum Dots via the Photochemical Route for …
Citations: 121
Ag2S/Ag Heterostructure: A Promising Electrocatalyst for the Hydrogen Evolution Reaction
Citations: 110
Construction of CuS/Au heterostructure through a simple photoreduction route for enhanced electrochemical hydrogen evolution and photocatalysis
Citations: 104
Decoration of MoS2 on g-C3N4 surface for efficient hydrogen evolution reaction
Citations: 88
Graphitic-carbon nitride support for the synthesis of shape-dependent ZnO and their application in visible light photocatalysts
Citations: 80
Decoration of carbon nitride surface with bimetallic nanoparticles (Ag/Pt, Ag/Pd, and Ag/Au) via galvanic exchange for hydrogen evolution reaction
Citations: 77
Decoration of Pd and Pt nanoparticles on a carbon nitride (C3N4) surface for nitro-compounds reduction and hydrogen evolution reaction
Citations: 55
Synthesis of one-dimensional RuO2 nanorod for hydrogen and oxygen evolution reaction: An efficient and stable electrocatalyst
Citations: 44
Development of CuAg/Cu2O nanoparticles on carbon nitride surface for methanol oxidation and selective conversion of carbon dioxide into formate
Citations: 37
Nanosheet Synthesis of Mixed Co3O4/CuO via Combustion Method for Methanol Oxidation and Carbon Dioxide Reduction
Citations: 29
Structural, optical and photocatalytic properties of PVC/CdS nanocomposites prepared by soft chemistry method
Citations: 27
Synthesis of hydroxide nanoparticles of Co/Cu on carbon nitride surface via galvanic exchange method for electrocatalytic CO2 reduction into formate
Citations: 20
Preparation of Sb:SnO2 thin films and its effect on optoelectrical properties
Citations: 18
Microwave‐Assisted Efficient Suzuki‐Miyaura Cross‐Coupling Reactions in Water Catalyzed by Nano‐Pd/gC3N4 Composite
Citations: 18
Preparation and properties of electrodeposited Ni-B-V2O5 composite coatings
Citations: 17