Muhammad Rizwan | Environmental Chemistry | Best Researcher Award

Dr. Muhammad Rizwan | Environmental Chemistry | Best Researcher Award

Postdoc Researcher, Changsha University of Science & Technology, China

Dr. Muhammad Rizwan is a seasoned soil and environmental scientist from Pakistan, specializing in sustainable green materials and engineered biochars for environmental management. With over a decade of experience, he has led research in nanomaterial synthesis, environmental chemistry, resource recovery, and climate change mitigation. Currently, he is a Senior Postdoctoral Fellow at Changsha University of Science and Technology, China, where he leads independent and collaborative research projects, mentors students, and contributes significantly to environmental science literature. He has held positions at Central South University, China Agricultural University, and the University of Okara, Pakistan. His scientific contributions include numerous high-impact publications, editorial roles, and peer-review activities for leading journals. Dr. Rizwan is dedicated to advancing environmental sustainability through innovative research solutions and maintains strong international collaborations, aiming to tackle global environmental challenges and improve ecological health worldwide.

Professional Profile

Google Scholar

Education 

Dr. Muhammad Rizwan began his academic journey with a Bachelor of Science degree from PMAS-Arid Agriculture University, Rawalpindi, Pakistan, between 2007 and 2011, where he excelled as a merit scholarship holder. He continued his studies at the same institution, completing a Master of Science in Soil and Environmental Sciences from 2011 to 2013, supported by the USAID Merit Scholarship. Eager to expand his expertise internationally, he pursued a Ph.D. in Soil and Environmental Sciences at China Agricultural University, Beijing, from 2015 to 2019, under a prestigious full scholarship from the Chinese Scholarship Council (CSC). In addition to his scientific training, he undertook a Chinese language course at China Agricultural University in 2014-2015 to support his academic and professional integration in China. His educational journey has equipped him with a deep multidisciplinary understanding of soil science, environmental remediation, and sustainable resource management.

Experience 

Dr. Muhammad Rizwan’s professional experience spans academia and research across Pakistan and China. As a Senior Postdoctoral Fellow at Changsha University of Science and Technology since December 2024, he designs experiments, conducts data analysis, publishes research, and teaches undergraduate courses in Environmental Sciences. From June 2021 to November 2024, he served as a Postdoctoral Fellow at Central South University, where he specialized in engineered biochars, experimental research, and student mentoring. Earlier, he worked as an IPFP Fellow (equivalent to Assistant Professor) at the University of Okara, Pakistan, teaching courses, securing research funding, and managing departmental responsibilities. His career began as a University Research Assistant at China Agricultural University from 2016 to 2019, focusing on biochar research and publication writing. He is also actively engaged in editorial roles for journals and peer-review activities, further strengthening his profile as a leading environmental scientist.

Awards and Honors 

Dr. Muhammad Rizwan has earned multiple accolades reflecting his research excellence and academic commitment. He was selected as a Distinguished Postdoctoral Fellow at Central South University in 2024, recognizing his impactful contributions to environmental science. During his doctoral studies, he held a full scholarship from the Chinese Scholarship Council (CSC) from 2015 to 2019, and he was honored with the “Excellent Research Achievement Award” by China Agricultural University for two consecutive years, 2015 and 2016. He won the Best Presentation Award at the 4th Asia Pacific Biochar Conference in Foshan, China, in 2018. Earlier in his academic journey, he consistently secured merit scholarships during his Bachelor’s and Master’s studies at PMAS-Arid Agriculture University, Rawalpindi, Pakistan, including the prestigious USAID Merit Scholarship between 2011 and 2013. These honors underscore his dedication, innovative research spirit, and contributions to sustainable environmental solutions.

Research Interests 

Dr. Muhammad Rizwan’s research interests span diverse yet interconnected fields within environmental science. His primary focus lies in the synthesis and engineering of advanced biochars for sustainable environmental management, addressing pollution remediation, soil health improvement, and resource recovery. He is deeply engaged in nanomaterial synthesis and exploring the environmental chemistry of pollutants and emerging contaminants. His work also emphasizes developing green materials and innovative sorbents for water and soil remediation, contributing to climate change mitigation strategies through carbon sequestration and circular economy approaches. He is keenly interested in using biochar-based composites and functional materials for removing heavy metals, organic pollutants, and emerging contaminants from ecosystems. His interdisciplinary research bridges environmental chemistry, materials science, sustainable agriculture, and environmental engineering, reflecting a strong commitment to sustainable development goals. Dr. Rizwan aims to pioneer solutions that advance environmental sustainability while addressing pressing global ecological challenges.

Research Skills 

Dr. Muhammad Rizwan possesses extensive research skills in experimental design, nanomaterial synthesis, and the engineering of biochar-based materials for environmental applications. He excels in advanced techniques for synthesis and characterization of biochars, including surface functionalization, magnetic modification, and steam explosion pretreatments. His expertise covers analytical methods like spectroscopy, electron microscopy, adsorption analysis, and thermal analysis for evaluating material properties and pollutant interactions. Dr. Rizwan is adept at data analysis using statistical tools and machine learning approaches, contributing to predictive modeling in environmental studies. He is skilled in writing high-quality research publications, preparing project proposals, and delivering scientific presentations. His experience includes supervising students, leading collaborative research projects, and coordinating multi-institutional studies. Additionally, he actively contributes to scientific journals as an editor and reviewer, ensuring rigorous peer-review standards. His research skills uniquely position him to develop innovative solutions for environmental sustainability and pollution remediation.

Publication Top Notes

  • Synthesis, characterization and application of magnetic and acid modified biochars following alkaline pretreatment of rice and cotton straws

  • A review of mechanism and adsorption capacities of biochar-based engineered composites for removing aquatic pollutants from contaminated water

  • Biochar as a green sorbent for remediation of polluted soils and associated toxicity risks: a critical review

  • Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants

  • Steam explosion of crop straws improves the characteristics of biochar as a soil amendment

  • Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass

  • Potential value of biochar as a soil amendment: A review

  • Sustainable manufacture and application of biochar to improve soil properties and remediate soil contaminated with organic impurities: a systematic review

  • Exogenously applied melatonin enhanced chromium tolerance in pepper by up-regulating the photosynthetic apparatus and antioxidant machinery

  • Tuning active sites on biochars for remediation of mercury-contaminated soil: A comprehensive review

  • Biochar enhances the growth and physiological characteristics of Medicago sativa, Amaranthus caudatus and Zea mays in saline soils

  • Manganese-modified biochar promotes Cd accumulation in Sedum alfredii in an intercropping system

  • Lead-Immobilization, transformation, and induced toxicity alleviation in sunflower using nanoscale Fe°/BC: Experimental insights with Mechanistic validations

  • Innovative dual-active sites in interfacially engineered interfaces for high-performance S-scheme solar-driven CO2 photoreduction

  • Interfacially Modulated S‐Scheme Van der Waals Heterojunctional Photocatalyst for Selective CO2 Photoreduction Coupled with Organic Pollutant Degradation

  • Simultaneous dopants and defects synergistically modulate the band structure of CN in Z-scheme heterojunctional photocatalysts for simultaneous HER and OER production

  • Rational Design Strategy for High‐Valence Metal‐Driven Electronically Modulated High‐Entropy Co–Ni–Fe–Cu–Mo (Oxy) Hydroxide as Superior Multifunctional Electrocatalysts

  • Characteristics of Cd2+ sorption/desorption of modified oilrape straw biochar

  • Synergistic effect of biochar and intercropping on lead phytoavailability in the rhizosphere of a vegetable-grass system

  • COMPARISON OF PB2+ ADSORPTION AND DESORPTION BY SEVERAL CHEMICALLY MODIFIED BIOCHARS DERIVED FROM STEAM EXPLODED OIL-RAPE

Dr. Vemula Madhavi | Environmental Chemistry | Women Researcher Award

Dr. Vemula Madhavi | Environmental Chemistry | Women Researcher Award

Dr. Vemula Madhavi , Environmental Chemistry , Assistant Professor at BVRIT HYDERABAD College of Engineering for Women, India

Dr. S. Madhavi V is an accomplished chemist with a Ph.D. from Sri Venkateswara University, Tirupati, India. She has cultivated a solid academic and research career focused on nanomaterials, environmental remediation, and analytical chemistry. Currently serving as an Assistant Professor at BVRIT Hyderabad, Dr. Madhavi brings more than 15 years of teaching and research experience. Her work includes a granted Indian patent and multiple high-impact publications in reputed journals. She has also secured funding for research under TEQIP-III, JNTUH. With an h-index of 11 and over 500 citations, her contributions to green synthesis and environmental nanotechnology are widely recognized. A passionate educator and innovator, she continually strives to bridge the gap between research and societal application, especially in the field of water purification using sustainable materials.

Professional Profile : 

Google Scholar

Orcid 

Scopus 

Summary of Suitability for Award:

Dr. S. Madhavi V is highly suitable for the “Women Researcher Award” due to her significant and sustained contributions to the field of chemistry, particularly in nanotechnology and environmental applications. She has over 15 years of combined research and teaching experience, a granted Indian patent on sustainable water purification using graphene oxide from rice husk, and a funded research project under TEQIP-III on green nanomaterials for wastewater treatment. Her scholarly impact includes 540+ citations, h-index of 11, and 12+ research publications in high-impact journals spanning areas such as nanocomposites, MOFs, biomarker sensors, and agricultural nanotechnology. She integrates innovative eco-friendly methodologies in her work and demonstrates leadership as an academic and researcher. Dr. Madhavi has also contributed to science education through multiple academic positions, helping foster the next generation of chemists. Dr. S. Madhavi V embodies the spirit and excellence celebrated by the “Women Researcher Award”. Her impactful research, interdisciplinary approach, and commitment to sustainable science position her as a leading woman in the chemical sciences. Her achievements in patenting, publishing, and funded research underscore her excellence and innovation. She is not only an accomplished scientist but also a role model for aspiring women researchers in India and beyond.

🎓Education:

Dr. Madhavi V pursued her academic journey at Sri Venkateswara University, Tirupati, where she earned her Ph.D. in Chemistry in 2014. Her research was grounded in environmental and materials chemistry, focusing on the synthesis and application of nanomaterials for remediation. She holds an M.Sc. in Chemistry (2008) with a stellar score of 78.9%, and a B.Sc. in Mathematics, Physics, and Chemistry (2006) with an impressive 84%. Her earlier education includes Intermediate (2003) with 90% and SSC (2001) with 88%, showcasing consistent academic excellence throughout. These solid foundations in science and mathematics equipped her with critical analytical skills, enabling her to explore interdisciplinary challenges across chemistry and environmental science. Her academic progression reflects a deep commitment to learning, teaching, and developing sustainable scientific innovations.

🏢Work Experience:

Dr. Madhavi V began her academic career as an Academic Consultant in Chemistry at Yogi Vemana University (2008–2009). She then served as an Assistant Professor at Annamacharya Engineering College, Tirupati (2009–2010), and a Teaching Assistant at S.V. University (2010–2013). Her pedagogical contributions continued at CMRIT, Hyderabad (2013–2014), before joining BVRITH Hyderabad in 2014, where she continues to inspire students. Over 15 years, she has demonstrated excellence in curriculum delivery, research supervision, and innovation-driven education. Her interdisciplinary teaching spans general chemistry, environmental science, nanotechnology, and green chemistry. She has also guided students in research-based learning, integrating academic content with practical applications. Her teaching is marked by a commitment to quality education, fostering critical thinking and sustainable innovation among learners.

🏅Awards: 

Dr. S. Madhavi V has received several honors that underscore her excellence in research and innovation. Notably, she was granted an Indian patent (No. 410482) for her invention titled “Pretreated Rice Husk for Sustainable Graphene Oxide for Adsorptive Removal of Chromium from Water”, which highlights her commitment to sustainable environmental solutions. She also secured a funded research grant under the TEQIP-III collaborative scheme (JNTUH, 2019) for her project focused on synthesizing graphene from agricultural waste for the remediation of heavy metals in wastewater. Her scholarly impact is evidenced by a Google Scholar h-index of 11, i10 index of 11, and over 540 citations, recognizing her influential contributions to nanochemistry and environmental science. She is listed on major research platforms including Scopus, ORCID, and Google Scholar, which reflects her active engagement with the global scientific community. These accolades mark her as a distinguished and impactful woman researcher in the chemical sciences.

🔬Research Focus:

Dr. Madhavi V’s research is centered on green synthesis of nanomaterials, graphene production from biomass, and removal of heavy metals and dyes from wastewater using low-cost adsorbents. Her studies explore the eco-friendly conversion of agricultural waste into high-efficiency nanomaterials, with a focus on water remediation. She is deeply invested in adsorptive technologies, biomass-derived graphene, metal-organic frameworks (MOFs), and environmental sensors. Her work also extends to computational docking of metal complexes, magnetic and optical characterization of ferrites, and controlled release formulations for agricultural sustainability. By integrating sustainable materials science, environmental protection, and analytical techniques, her research contributes significantly to green chemistry and nanotechnology. With a strong inclination toward applications with social and environmental impact, Dr. Madhavi is a dedicated advocate for translating lab-scale innovations into real-world solutions.

Publication Top Notes:

1. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium

Citations: 221

2. An overview on research trends in remediation of chromium

Citations: 94

3. Remediation of chlorpyrifos-contaminated soils by laboratory-synthesized zero-valent nano iron particles: effect of pH and aluminium salts

Citations: 75

4. Synthesis and spectral characterization of iron-based micro and nanoparticles

Citations: 54

5. Chapter 8 – Recent improvements in the extraction, cleanup and quantification of bioactive flavonoids

Citations: 47

6. A selective and sensitive UPLC–MS/MS approach for trace level quantification of four potential genotoxic impurities in zolmitriptan drug substance

Citations: 36

7. Electrochemical investigations of lipase enzyme activity inhibition by methyl parathion pesticide: voltammetric studies

Citations: 33

8. Conjunctive effect of CMC–zero-valent iron nanoparticles and FYM in the remediation of chromium-contaminated soils

Citations: 30

9. Method development and validation study for quantitative determination of 2-chloromethyl-3,4-dimethoxy pyridine hydrochloride a genotoxic impurity in pantoprazole active …

Citations: 26

10. Liquid chromatography–tandem mass spectrometry method for simultaneous quantification of urapidil and aripiprazole in human plasma and its application to human pharmacokinetic …

Citations: 22