Dr. Chenxu Wang | Electrochemistry | Green Chemistry Award

Dr. Chenxu Wang | Electrochemistry | Green Chemistry Award

Dr. Chenxu Wang , Electrochemistry ,Research associate at University of Texas at Dallas, United States

Dr. Chenxu Wang is a dynamic and innovative Research Associate at the BEACONS Center, University of Texas at Dallas. With a solid foundation in electrochemical energy storage, he completed his Ph.D. in 2023 from Washington State University under the mentorship of Dr. Weihong Zhong. Since 2016, he has consistently contributed to the field of battery technology, focusing on lithium-ion, lithium-metal, and sodium-ion systems. His research incorporates cutting-edge innovations such as protein-based solid-state materials for enhanced battery safety and performance. Alongside academic excellence, Dr. Wang brings hands-on experience from the battery manufacturing industry, enriching his practical insights. He has published over 18 scientific papers and is the lead author of a technical book. He actively engages with the scientific community through editorial roles and collaborations. Dr. Wang is dedicated to advancing green, safe, and high-performance battery technologies for a sustainable energy future.

Professional Profile :         

Google Scholar

Summary of Suitability for Award:

Dr. Chenxu Wang is an exceptional candidate for the Green Chemistry Award due to his innovative integration of biological and natural materials—particularly silk fibroin proteins—into the design of advanced battery components. His work directly aligns with the principles of green chemistry. Dr. Wang has demonstrated that green materials can match or surpass traditional materials in performance. His contributions include the development of protein-based solid electrolytes, eco-friendly binders, and non-toxic separators, which not only advance battery safety and efficiency but also minimize environmental impact. Dr. Chenxu Wang’s pioneering work in applying natural biomolecules to battery technology presents a paradigm shift toward eco-conscious energy storage solutions. His holistic approach—spanning green material synthesis, automation, and recycling—makes him an ideal recipient of the “Green Chemistry Award”. His research not only addresses key environmental challenges but also offers scalable solutions for the clean energy transition.

🎓Education:

Dr. Chenxu Wang earned his Ph.D. in Materials Science and Engineering from Washington State University (WSU) in 2023, where he conducted advanced battery research under Dr. Weihong Zhong. His doctoral work focused on sustainable energy storage systems, particularly lithium-metal and lithium-sulfur batteries. During his time at WSU, he received prestigious awards recognizing both academic excellence and research contributions. Prior to his Ph.D., Dr. Wang obtained his undergraduate and possibly a master’s degree (details unspecified) in fields related to chemistry or materials science, laying the groundwork for his later specialization in electrochemical systems. His academic training has been marked by a strong emphasis on interdisciplinary problem-solving, including materials synthesis, electrochemical characterization, and green chemistry applications. Throughout his education, Dr. Wang developed a strong technical foundation and research mindset that continue to fuel his contributions to battery innovation and electrochemical energy storage.

🏢Work Experience:

Dr. Chenxu Wang is currently serving as a Research Associate at the BEACONS Center, University of Texas at Dallas, where he contributes to groundbreaking projects in next-generation battery technologies. Since 2016, he has worked extensively on battery research, accumulating a unique blend of academic and industrial experience. He previously worked in the battery manufacturing industry, where he gained hands-on experience in the development and scaling of energy storage materials and systems. During his Ph.D. at WSU, he managed several interdisciplinary research projects on solid-state electrolytes and sustainable battery materials. Dr. Wang is involved in both laboratory experimentation and theoretical modeling. In addition to his research roles, he is active in the scientific publishing ecosystem, serving on the Youth Editorial Board of Exploration and as a Guest Editor for Batteries. His contributions span project leadership, material innovation, and research communication within the energy storage field.

🏅Awards: 

Dr. Chenxu Wang has been recognized with multiple prestigious awards that highlight his exceptional academic and research performance. In 2023, he received the Outstanding Dissertation Award and the Outstanding Research Assistant Award from Washington State University, acknowledging the novelty and impact of his Ph.D. work in the field of electrochemical energy storage. These accolades are a testament to his contributions toward addressing real-world energy challenges through scientific innovation. Dr. Wang’s leadership and editorial responsibilities also reflect his growing recognition in the global research community. He currently serves as a Guest Editor for the journal Batteries and is a Youth Editorial Board Member for the journal Exploration. His research excellence and dedication to sustainable energy have also led to collaborative opportunities and growing citations (over 253 citations) across reputable journals. These honors reflect Dr. Wang’s commitment to advancing green chemistry and sustainable battery technology.

🔬Research Focus:

Dr. Chenxu Wang’s research is centered on electrochemical energy storage systems, with a strong emphasis on green chemistry, sustainability, and advanced battery materials. His innovative work involves integrating natural proteins such as silk fibroin into solid-state battery components, which significantly improve safety, ionic conductivity, and performance. He has developed protein-based solid electrolytes, binders, and separators, targeting the challenges of dendrite formation and the polysulfide shuttle effect in lithium-metal and lithium-sulfur batteries. His research also explores automated synthesis, material characterization, and battery recycling, aiming to create scalable, eco-friendly solutions for energy storage. Dr. Wang’s unique blend of academic research and industry exposure allows him to bridge theory and practice, contributing meaningfully to real-world battery innovations. His projects on high-energy-density lithium/sodium-ion batteries and advanced liquid electrolytes further reflect his comprehensive approach to solving multi-faceted challenges in next-generation energy storage.

Publication Top Notes:

A water-soluble binary conductive binder for Si anode lithium ion battery
Citations: 57

Natural protein as novel additive of a commercial electrolyte for Long-Cycling lithium metal batteries
Citations: 30

Protein-modified SEI formation and evolution in Li metal batteries
Citations: 29

A protein-enabled protective film with functions of self-adapting and anion-anchoring for stabilizing lithium-metal batteries
Citations: 26

Synthesis of β-FeOOH nanorods adhered to pine-biomass carbon as a low-cost anode material for Li-ion batteries
Citations: 20

A bioinspired coating for stabilizing Li metal batteries
Citations: 18

Promising sustainable technology for energy storage devices: Natural protein-derived active materials
Citations: 15

Incorporating SnO2 nanodots into wood flour-derived hierarchically porous carbon as low-cost anodes for superior lithium storage
Citations: 12

Interface-tailored forces fluffing protein fiber membranes for high-performance filtration
Citations: 10

Highly dispersed SnO2 nanoparticles confined on xylem fiber-derived carbon frameworks as anodes for lithium-ion batteries
Citations: 7

An amino acid-enabled separator for effective stabilization of Li anodes
Citations: 6

Effects of Anions and Protein Structures on Protein‐Based Solid Electrolytes
Citations: 6

Assoc. Prof. Dr. ROSHAN NAZIR | Electrochemistry | Chemical Environmental Award

Assoc. Prof. Dr. ROSHAN NAZIR | Electrochemistry | Chemical Environmental Award

Assoc. Prof. Dr. ROSHAN NAZIR | Associate Professor at Department of Chemistry, Poornima University, Jaipur, Rajasthan, India

Dr. Roshan Nazir is a distinguished researcher in nanomaterials, electrocatalysis, and coordination chemistry, currently serving as an Assistant Professor at Guru Nanak Institute of Technology, Hyderabad. He has previously worked as a DST-SERB National Postdoctoral Fellow at IIT Delhi, Research Associate at IIT Kharagpur, and Postdoctoral Fellow at Bilkent University (Turkey) and Qatar University. His Ph.D. from BITS Pilani focused on metal and metal oxide nanoparticles for electrocatalysis. His groundbreaking research includes hydrogen and oxygen evolution reactions, CO₂ reduction, and photovoltaic applications. With several high-impact publications, he has significantly contributed to energy materials and catalysis. Dr. Nazir has also held key administrative roles, including IIC and R&D Coordinator, demonstrating leadership in academic research and innovation. His expertise, coupled with prestigious fellowships and awards, establishes him as a leading scientist in sustainable energy research.

Professional Profile :                       

Google Scholar

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Roshan Nazir is highly suitable for the “Chemical Environmental Award” due to his extensive research in nanomaterials, electrocatalysis, and sustainable energy applications. His work focuses on developing efficient and cost-effective catalysts for clean energy production, hydrogen evolution reactions (HER), oxygen evolution reactions (OER), and CO₂ reduction, which align with the principles of green chemistry and environmental sustainability. His contributions to renewable energy solutions, pollution mitigation, and the reduction of harmful industrial emissions make him an excellent candidate for this award. Dr. Nazir’s research also includes MXene-based catalysts for hydrogen energy, electrodeposited Cu₂O/ZnO heterojunctions for solar applications, and the use of transition metal catalysts in electrochemical reactions, all aimed at minimizing environmental impact. His work bridges fundamental chemistry and industrial applications, ensuring a cleaner and more sustainable future. His international postdoctoral fellowships, leadership in research projects, and high-impact publications further highlight his commitment to advancing environmentally friendly chemical technologies.

🎓Education:

Dr. Roshan Nazir earned his Doctor of Philosophy (Ph.D.) in Chemistry from Birla Institute of Technology and Science (BITS), Pilani, India (2013–2019). His research focused on the synthesis and characterization of metal and metal oxide nanoparticles for electrocatalytic oxygen and hydrogen evolution reactions. His thesis was submitted on May 17, 2018, and awarded on February 28, 2019. Prior to this, he completed his Master of Science (M.Sc.) in Chemistry from Jamia Millia Islamia, India (2010–2012), where he gained expertise in advanced inorganic, organic, and physical chemistry. His academic journey laid a strong foundation in nanomaterials, catalysis, and electrochemistry, which he further explored during his postdoctoral research. His academic excellence and deep understanding of materials chemistry have been instrumental in his contributions to electrocatalysis, hydrogen production, and sustainable energy solutions.

🏢Work Experience:

Dr. Roshan Nazir is currently an Assistant Professor at Guru Nanak Institute of Technology, Hyderabad, India, since October 2023. He has extensive postdoctoral experience, having worked as a DST-SERB National Postdoctoral Fellow (NPDF) at the Indian Institute of Technology (IIT) Delhi from 2022 to 2023. Prior to this, he was a Research Associate at the Department of Metallurgical and Materials Engineering, IIT Kharagpur (2020–2021), where he worked on cutting-edge materials research. He also held prestigious international positions, including a Postdoctoral Fellowship (TÜBİTAK) at Bilkent University, Ankara, Turkey (2019–2020) and a Postdoctoral Fellow (Industrial Project – Total) at Qatar University, Doha, Qatar (2018–2019). His vast experience spans nanomaterials, electrocatalysis, hydrogen energy, and renewable energy applications. His interdisciplinary expertise and research collaborations have significantly contributed to advancements in materials chemistry and sustainable energy.

🏅Awards: 

Dr. Roshan Nazir has received several prestigious fellowships and awards for his outstanding research contributions. He was awarded the DST-SERB National Postdoctoral Fellowship (NPDF), serving as the Principal Investigator (PI) of the project, which highlights his leadership in scientific research. He also received the TÜBİTAK Fellowship from Turkey, a highly competitive international postdoctoral fellowship, recognizing his expertise in materials chemistry and catalysis. During his Ph.D., he was a Junior Research Fellow (JRF) under a Department of Science and Technology (DST)-sponsored project, further demonstrating his early excellence in research. His work has been published in high-impact journals, and his contributions to electrocatalysis, hydrogen production, and nanomaterials synthesis have earned him international recognition. Additionally, his administrative roles, such as serving as the IIC and R&D Coordinator at Guru Nanak Institute of Technology, showcase his dedication to research and academic leadership.

🔬Research Focus:

Dr. Roshan Nazir’s research primarily focuses on the synthesis and characterization of metal and metal oxide nanoparticles for electrocatalysis, hydrogen evolution reactions (HER), and oxygen evolution reactions (OER). His work aims to develop highly efficient, cost-effective, and stable catalysts for sustainable energy applications. He has explored MXene-based catalysts for ecological hydrogen energy generation, investigated electrodeposited Cu2O/ZnO heterojunctions for photovoltaic applications, and studied gadolinium telluride for oxygen evolution and reduction reactions. His research extends to CO2 reduction, methanol oxidation, and nitro-compound reduction, contributing to green energy solutions. His expertise in galvanic exchange synthesis, electrocatalytic nitrogen reduction, and carbon nitride-supported catalysts has led to the development of innovative materials for energy conversion and storage. Through his work, he aims to bridge the gap between fundamental nanomaterials research and practical applications in renewable energy and sustainable chemistry.

Publication Top Notes:

Synthesis of Monometallic (Au and Pd) and Bimetallic (AuPd) Nanoparticles Using Carbon Nitride (C3N4) Quantum Dots via the Photochemical Route for …
Citations: 121
Ag2S/Ag Heterostructure: A Promising Electrocatalyst for the Hydrogen Evolution Reaction
Citations: 110
Construction of CuS/Au heterostructure through a simple photoreduction route for enhanced electrochemical hydrogen evolution and photocatalysis
Citations: 104
Decoration of MoS2 on g-C3N4 surface for efficient hydrogen evolution reaction
Citations: 88
Graphitic-carbon nitride support for the synthesis of shape-dependent ZnO and their application in visible light photocatalysts
Citations: 80
Decoration of carbon nitride surface with bimetallic nanoparticles (Ag/Pt, Ag/Pd, and Ag/Au) via galvanic exchange for hydrogen evolution reaction
Citations: 77
Decoration of Pd and Pt nanoparticles on a carbon nitride (C3N4) surface for nitro-compounds reduction and hydrogen evolution reaction
Citations: 55
Synthesis of one-dimensional RuO2 nanorod for hydrogen and oxygen evolution reaction: An efficient and stable electrocatalyst
Citations: 44
Development of CuAg/Cu2O nanoparticles on carbon nitride surface for methanol oxidation and selective conversion of carbon dioxide into formate
Citations: 37
Nanosheet Synthesis of Mixed Co3O4/CuO via Combustion Method for Methanol Oxidation and Carbon Dioxide Reduction
Citations: 29
Structural, optical and photocatalytic properties of PVC/CdS nanocomposites prepared by soft chemistry method
Citations: 27
Synthesis of hydroxide nanoparticles of Co/Cu on carbon nitride surface via galvanic exchange method for electrocatalytic CO2 reduction into formate
Citations: 20
Preparation of Sb:SnO2 thin films and its effect on optoelectrical properties
Citations: 18
Microwave‐Assisted Efficient Suzuki‐Miyaura Cross‐Coupling Reactions in Water Catalyzed by Nano‐Pd/gC3N4 Composite
Citations: 18
Preparation and properties of electrodeposited Ni-B-V2O5 composite coatings
Citations: 17

 

Prof. Dr. AFZAL SHAH | Photoelectrochemistry | Best Researcher Award

Prof. Dr. AFZAL SHAH | Photoelectrochemistry | Best Researcher Award

Prof. Dr. AFZAL SHAH , Quaid-i-Azam University, Islamabad, Pakistan

Prof. Dr. Afzal Shah is a distinguished Professor of Chemistry at Quaid-i-Azam University, Islamabad, specializing in Physical Chemistry. His expertise lies in electrochemical sensors, catalysis, and environmental chemistry. With over 307 publications, multiple patents, and significant research grants, his work has gained international recognition. He has an impressive H-index and thousands of citations, reflecting the impact of his research. His work focuses on developing sensors for detecting pollutants, cancer biomarkers, and renewable energy applications. He has been consistently ranked among the top 2% scientists globally and has received prestigious awards, including gold medals and international research honors. He has supervised numerous Ph.D. and M.S. scholars, contributing to academic excellence. His collaborations extend across China, Canada, Europe, the USA, and Turkey, fostering global scientific advancements. As a researcher, mentor, and innovator, he continues to shape the future of chemical sciences and sustainable technologies.

Professional Profile:

Orcid

Scopus  

Summary of Suitability for Award:

Prof. Dr. Afzal Shah is an exceptional candidate for the “Best Researcher Award” due to his remarkable contributions to physical chemistry, electrochemical sensing, and catalysis. With 307 publications in high-impact journals, over 10,000 citations, and an H-index exceeding 50, his research has had a profound global impact. His pioneering work in electrochemical sensors for detecting pollutants, cancer biomarkers, and renewable energy applications has led to innovative patents, including a granted US and UAE patent. He has also secured numerous national and international research grants, reflecting his strong research leadership. Recognized as one of the top 2% scientists globally, he has received multiple gold medals, best paper awards, and international fellowships.Prof. Dr. Afzal Shah’s outstanding research achievements, innovation, and global recognition make him a highly deserving candidate for the Best Researcher Award. His groundbreaking contributions to chemical sciences and commitment to research excellence set him apart as a leader in the field.

🎓Education:

Prof. Dr. Afzal Shah holds a Ph.D. in Physical Chemistry from Quaid-i-Azam University (Pakistan) and Universidade de Coimbra (Portugal) (2005–2010). He completed his postdoctoral research at the University of Toronto, Canada (2014) and served as a Visiting Scientist at Ankara University, Turkey (2017). His academic journey began with an M.Sc. in Physical Chemistry from the University of Peshawar (1994), where he secured the 1st position. With a strong foundation in electrochemistry, catalysis, and material sciences, his expertise extends across photocatalysis, electrocatalysis, and biosensor development. His education laid the groundwork for groundbreaking research in environmental chemistry and renewable energy solutions. Throughout his academic career, he has remained dedicated to advancing chemical sciences through interdisciplinary research and high-impact publications. His extensive knowledge and academic excellence have positioned him as a leader in chemical sensor development, sustainable energy solutions, and analytical chemistry techniques.

🏢Work Experience:

Prof. Dr. Afzal Shah has over 25 years of teaching and research experience in Physical Chemistry. He is currently a Professor at Quaid-i-Azam University (since March 2022), previously serving as Associate Professor (2017-2022), including a two-year tenure at the University of Bahrain (2018-2020). Before that, he was an Assistant Professor at Quaid-i-Azam University (2011-2017). He has taught various courses, including Electrochemistry, Quantum Mechanics, Thermodynamics, Biophysical Chemistry, and Advanced Research Methods. He has supervised 11 Ph.D. and 56 M.S. students, along with two postdoctoral researchers. His international exposure includes academic visits to China, Canada, Turkey, Portugal, Saudi Arabia, Bahrain, and Sharjah. As a prolific researcher, he has authored over 307 scientific articles, secured 6 patents, and received 15 research grants. His leadership roles include serving as an editor of six journals, head of research committees, and executive council member of the Chemical Society of Pakistan.

🏅Awards: 

Prof. Dr. Afzal Shah has received numerous awards for his contributions to chemistry. He was honored with two Gold Medals, one at the university level and another at the national level (Pakistan Academy of Sciences, 2021). He won the Young Researcher Award (2013) and Gold Medal (2014) for outstanding research. His ACS Cash Award (2016) recognized his publications in ACS flagship journals. He received Elsevier’s Royalty Award (2019) for his book contributions. His Best Paper Award (2015), A-Category Research Productivity Award (2015), and multiple Performance-Based Annual Increment Awards (2012-2023) highlight his research excellence. His inclusion in Stanford-Elsevier’s Top 2% Scientists ranking (4 consecutive years) cements his impact on global research. As a Fellow of the Chemical Society of Pakistan (2023) and recipient of certifications from Elsevier for contributions to SDGs in health & environment, he continues to shape the field of chemical sciences.

🔬Research Focus:

Prof. Dr. Afzal Shah’s research is centered on electrochemical sensors, catalysis, and environmental chemistry. His work includes developing sensors for detecting water contaminants, cancer biomarkers, and chemical/biological entities. He specializes in photocatalysis, electrocatalysis, and photoelectrocatalysis for energy applications such as carbon dioxide reduction, nitrogen reduction, and hydrogen production. His research extends to bioelectrochemical systems, microbial fuel cells, and advanced optical sensor technologies. He has pioneered new methods for the degradation of water contaminants using electrochemical and photocatalytic techniques. His contributions to renewable energy solutions, electrochemical biosensors, and sustainable water treatment technologies are widely recognized. With 307 publications, 6 patents, and 15 research grants, his research has significantly advanced nanotechnology-based sensing techniques. His collaborations with scientists from China, Europe, the USA, Canada, and Turkey continue to enhance global efforts in environmental sustainability and healthcare diagnostics.

Publication Top Notes:

An electroanalytical sensor for the detection of antibiotic cefoperazone sodium sulbactam sodium residue in wastewater

Authors: Mohsin Usman Javed, Afzal Shah, Muhammad Umar Farooq

Year: 2025

Harnessing the power of MXenes: a comprehensive exploration of their photocatalytic potential in mitigating hazardous dyes and CO2 reduction

Authors: Ayesha Gulzar, Abdul Haleem, Touseef Ur Rehman, Afzal Shah, Ihsan Ullah

Year: 2024

Citations: 7

Novel interfaces for internet of wearable electrochemical sensors

Authors: Suniya Shahzad, Faiza Jan Iftikhar, Afzal Shah, Hassan Abdur Rehman, Emmanuel Iheanyichukwu Iwuoha

Year: 2024

Electrochemical analysis of anticancer and antibiotic drugs in water and biological specimens

Authors: Ayesha Qureshi, Afzal Shah, Faiza Jan Iftikhar, Abdul Haleem, Muhammad Abid Zia

Year: 2024

Thermo-catalytic decomposition of cotton seed press cake over nickel doped zeolite Y, hydrogen: enhanced yield of bio-oil with highly selective fuel-range hydrocarbons

Authors: Marrij Afraz, Jan Nisar, Afzal Shah, Farooq Anwar, Wan Azlina Wan Abdul Karim Ghani

Year: 2024

Citations: 1

Electrochemical and optical protocols for the detection and removal of an antibiotic drug rifaximin from wastewater

Authors: Ifra Riffat, Afzal Shah

Year: 2024

Citations: 1

In-Depth Photocatalytic Degradation Mechanism of the Extensively Used Dyes Malachite Green, Methylene Blue, Congo Red, and Rhodamine B via Covalent Organic Framework-Based Photocatalysts

Authors: Abdul Haleem, Mohib Ullah, Saif Ur Rehman, Ishan Ullah, Hao Li

Year: 2024

Citations: 10

Effect of helium ion irradiation on the microstructure, mechanical properties and surface morphology of Inconel 625 alloy

Authors: Muhammad Meesum Bilal, Kashif Shahzad, Peng Lv, I. Ahmad, Tieshan Wang

Year: 2024

Citations: 2

Nanoporous Metal/Covalent Organic Framework-Based Electrocatalysts for Water Splitting

Authors: Syed Haider Ali Shah, Afzal Shah, Faiza Jan Iftikhar

Year: 2024

Citations: 4

Comprehensive assessment of carbon-, biomaterial- and inorganic-based adsorbents for the removal of the most hazardous heavy metal ions from wastewater

Authors: Nashra Sheraz, Afzal Shah, Abdul Haleem, Faiza Jan Iftikhar

Year: 2024

Citations: 25