72 / 100 SEO Score

Dr. Shoulong Xu | Nuclear Radiation Detection | Best Researcher Award

University of South China, China

Shoulong Xu, born in June 1988, is an Associate Professor in the School of Resources, Environment and Safety Engineering at the University of South China. A member of the Communist Party of China, he holds a Doctorate in Engineering and supervises master’s students. Xu conducted his postdoctoral research at Tsinghua University and has built a prominent career in nuclear safety and radiation detection. He has authored over 50 academic papers, including significant publications in high-impact journals, and holds seven invention patents. He leads provincial-level demonstration courses and teams focused on integrating ideological and political education into engineering disciplines. Xu actively contributes to professional societies, serving on committees within the Chinese Nuclear Society and the Chinese Instrument and Control Society. His research emphasizes technologies for nuclear emergency safety, radiation-hardened systems, and monitoring solutions for extreme environments, advancing both scientific knowledge and practical safety standards in the nuclear sector.

Professional Profile

Scopus

Education 

Shoulong Xu embarked on his academic path in 2006 at North China Electric Power University, where he earned his Bachelor’s degree in Thermal Energy and Power Engineering in July 2010. Driven by a growing interest in nuclear technology, he continued his education at the University of South China from September 2011 to June 2017, pursuing a doctoral degree in Nuclear Technology and Applications under the supervision of Professor Shuliang Zou. His Ph.D. research focused on nuclear radiation detection and monitoring technologies essential for safety and emergency response in nuclear facilities. Following his doctorate, Xu undertook a prestigious postdoctoral fellowship from December 2017 to December 2019 at the Department of Engineering Physics, Tsinghua University. During this period, he deepened his expertise in radiation detection and radiation-hardened systems. This robust educational background has been foundational in establishing Xu as a leading researcher and educator in nuclear safety engineering and radiation technologies.

Professional Experience 

After earning his doctorate, Shoulong Xu began his academic career as a Lecturer in June 2017 at the University of South China’s School of Resources, Environment and Safety Engineering. In June 2021, he was promoted to Associate Professor. His administrative trajectory has been equally dynamic: he served as Deputy Director and subsequently Director of the Safety Engineering Department between 2021 and 2024. Xu then took on leadership roles as Vice Dean of the School of Resources, Environment and Safety Engineering and Vice Dean of the Graduate School from 2024 to early 2025. As of March 2025, he serves as Director of the Admissions Office and Career Guidance Center at the University of South China. Parallel to these administrative positions, Xu conducted postdoctoral research at Tsinghua University from 2017 to 2019. Throughout his career, he has combined research, teaching, and leadership, making significant contributions to nuclear safety and engineering education.

Awards and Honors

Shoulong Xu’s excellence in research and education has earned him significant recognition. He was selected as a Young Scholar under Hunan Province’s Furong Scholars Program, highlighting his potential and achievements in scientific innovation. Xu has been honored as a Model Teacher for Ideological and Political Education in Courses in Hunan Province, reflecting his dedication to integrating ideological values into technical education. He leads both a Model Teaching Team and a Model Course for Ideological and Political Education in the province, showcasing his influence in academic reform. Additionally, he directs a Demonstration Course for Graduate Students in Hunan Province. Professionally, he serves as a committee member of the Youth Committee of the Chinese Nuclear Society and the Nuclear Instrumentation and Control Technology Branch of the Chinese Instrument and Control Society. He is also Deputy Director of two major provincial research centers, underscoring his leadership in advancing nuclear safety technologies and education.

Research Interests

Shoulong Xu’s research interests lie at the intersection of nuclear safety, radiation detection, and emergency technologies. He specializes in nuclear radiation detection and monitoring systems designed for extreme environments, including high-radiation fields and complex operational conditions. His work focuses on developing nuclear emergency safety technologies and equipment, ensuring timely and precise responses to nuclear incidents. Another key area of his research is radiation-hardened reinforcement techniques, aiming to enhance the durability and reliability of sensing and control systems used in nuclear robots and facilities. Xu is deeply involved in studying nuclear facility decommissioning and spent fuel reprocessing safety, working on risk assessment and innovative monitoring approaches. His projects often combine cutting-edge sensor technologies, advanced algorithms for real-time data processing, and robust system engineering to address the challenges posed by nuclear accidents and radiation hazards, contributing both to national defense needs and civilian nuclear safety enhancements.

Research Skills 

Shoulong Xu possesses a robust set of research skills essential for advancing nuclear safety technologies. He is proficient in nuclear radiation detection methods, including using monolithic active pixel sensors (MAPS) and commercial off-the-shelf (COTS) CMOS sensors for both low- and high-dose-rate environments. Xu is skilled in radiation-hardening techniques, ensuring electronic systems can function reliably under intense radiation exposure. His expertise extends to atmospheric diffusion modeling using tools like CALPUFF, applied to simulate radionuclide dispersion in nuclear incidents. Xu is adept at risk assessment methodologies for nuclear facilities, including dynamic fault tree analysis and socio-technical modeling of accident scenarios. He has strong capabilities in real-time data acquisition, signal processing, and parallel computing for optimizing radiation monitoring systems. Xu also demonstrates proficiency in hardware-software integration for radiation detection equipment. His experience spans both fundamental research and collaborative industrial projects, combining theoretical analysis with practical system development for nuclear safety applications.

Publication Top Notes

  • Research on Radiation Damage and Reinforcement of Control and Sensing Systems in Nuclear Robots. Electronics 2024, 13, 1214.

  • Study on the Atmospheric Diffusion of Airborne Radionuclide under LOCA of Offshore Floating Nuclear Power Plants Based on CALPUFF. Sustainability 2023, 15(3): 2572.

  • Risk Analysis and Evaluation of Nuclear Security Radiation Events in Spent Fuel Reprocessing Plants. Sustainability 2023, 15(1): 781.

  • Parallel processing of radiation measurements and radiation video optimization. Optics Express 2022, 30(26): 46870-46887.

  • Evaluation of Emergency Response Measures for the LOCA of A Marine Reactor. Sustainability 2022, 14(21): 13873.

  • Research on Calculation Method of Radiation Response Eigenvalue of a Single-Chip Active Pixel Sensor. Sensors 2022, 22(13): 4815.

  • Real-time monitoring method for radioactive substances using monolithic active pixel sensors (MAPS). Sensors 2022, 22(10): 3919.

  • Strong Radiation Field Online Detection and Monitoring System with Camera. Sensors 2022, 22(6): 2279.

  • Ultrawide-range radiation detection based on dynamic identification and analysis of the response of a monolithic active pixel sensor. Optics Express 2022, 30: 14134-14145.

  • Safety analysis of marine nuclear reactor in severe accident with dynamic fault trees based on cut sequence method. Nuclear Engineering and Technology 2022, 54(12): 4560-4570.

  • Effect analysis of break size on source term release and radioactive consequences of marine nuclear reactor during loss of coolant accident. Energy Research 2022, 46(15): 23715-23729.

  • A Novel Approach for Radionuclide Diffusion in the Enclosed Environment of a Marine Nuclear Reactor During a Severe Accident. Nuclear Science and Techniques 2022, 33(2): 1-13.

  • Low dose rate γ-ray detection using a MAPS camera under a neutron radiation environment. Optics Express 2021, 29(22): 34913-34925.

  • Obtaining High Dose rate γ-ray Detection with Commercial off-the-shelf CMOS Pixel Sensor Module. IEEE Sensors Journal 2019, 19(16): 6729.

  • Video Monitoring Application of CMOS 4T-PPD-APS Under γ-ray Radiation. Sensors 2019, 19(3): 359.

  • Effect of Commercial Off-The-Shelf MAPS on γ-Ray Ionizing Radiation Response to Different Integration Times and Gains. Sensors 2019, 19(22): 4950.

  • Study on the Availability of 4T-APS as a Video Monitor and Radiation Detector in Nuclear Accidents. Sustainability 2018, 10(7): 2172.

  • Radionuclide Transfer in the Zirconium Oxychloride Production Process and the Radiation Effect in a Typical Chinese Enterprise. Sustainability 2019, 11(21): 5906.

  • γ-ray Detection Using Commercial Off-The-Shelf CMOS and CCD Image Sensors. IEEE Sensors Journal 2017, 17(20): 6599-6604.

  • Study on Release and Migration of Radionuclides Under the Small Break Loss of Coolant Accident in a Marine Reactor. Science and Technology of Nuclear Installations.

Shoulong Xu | Nuclear Radiation Detection | Best Researcher Award

You May Also Like