Dr. Muhammad Yousaf’s contributions to material science and energy research have earned him recognition in the academic and scientific community. He is the recipient of multiple research fellowships, including two prestigious postdoctoral appointments in China—first at Southeast University, Nanjing, and currently at Shenzhen University. His work has been regularly featured in high-impact journals such as Fuel, Ceramics International, and Small Methods. Dr. Yousaf has co-authored several collaborative projects with renowned researchers such as Prof. Bin Zhu and Prof. Yuzheng Lu. His consistent publication record demonstrates his excellence in low-temperature fuel cell technologies, earning him a reputation for innovation and scientific rigor. He has contributed to several international research networks focused on advanced nanomaterials and clean energy. His growing citation count and leadership in interdisciplinary research projects reflect the high impact of his scientific output.
🔬Research Focus:
Dr. Muhammad Yousaf’s research centers on materials for energy conversion and storage, particularly solid oxide fuel cells (SOFCs), proton-conducting ceramics, and ferrite-based nanomaterials. He develops novel composite and doped structures that enhance oxygen reduction reaction (ORR) activity, proton conductivity, and magneto-optical properties. His Ph.D. focused on spinel and garnet ferrites for low-temperature SOFCs, while his postdoctoral research expands into heterojunctions, interfacial disordering, and mixed ionic-electronic conductors. His interdisciplinary approach combines material synthesis, characterization (XRD, SEM, TEM, EIS), and electrochemical evaluation. Dr. Yousaf is particularly interested in optimizing materials for low-temperature operations, which is critical for the commercial viability of ceramic fuel cells. He also explores rare earth doping, sol-gel processes, and microwave absorber applications. His goal is to create efficient, stable, and environmentally sustainable energy materials through cutting-edge material design and processing innovations.
Publication Top Notes:
1.Title: Structural and electromagnetic evaluations of YIG rare earth doped (Gd, Pr, Ho, Yb) nanoferrites for high frequency applications
Citations: 127
2.Title: ZnO/MgZnO heterostructure membrane with type II band alignment for ceramic fuel cells
Citations: 82
3.Title: Physical, structural, conductive and magneto-optical properties of rare earths (Yb, Gd) doped Ni–Zn spinel nanoferrites for data and energy storage devices
Citations: 80
4.Title: Semiconductor Fe-doped SrTiO3-δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520°C
Citations: 73
5.Title: Magnetic characteristics and optical band alignments of rare earth (Sm³⁺, Nd³⁺) doped garnet ferrite nanoparticles (NPs)
Citations: 67
6.Title: Preparations, optical, structural, conductive and magnetic evaluations of RE’s (Pr, Y, Gd, Ho, Yb) doped spinel nanoferrites
Citations: 66
7.Title: Electrochemical properties of Ni₀.₄Zn₀.₆Fe₂O₄ and the heterostructure composites (Ni–Zn ferrite-SDC) for low temperature solid oxide fuel cell (LT-SOFC)
Citations: 62
8.Title: Structural, magnetic, and electrical evaluations of rare earth Gd³⁺ doped in mixed Co–Mn spinel ferrite nanoparticles
Citations: 57
9.Title: Electrochemical Properties of a Co-Doped SrSnO₃−δ-Based Semiconductor as an Electrolyte for Solid Oxide Fuel Cells
Citations: 57
10.Title: Surface‐engineered homostructure for enhancing proton transport1
Citations: 55
11.Title: Effect of Gd and Co contents on the microstructural, magneto-optical and electrical characteristics of cobalt ferrite (CoFe₂O₄) nanoparticles
Citations: 53
12.Title: Semiconductor Nb-Doped SrTiO₃−δ Perovskite Electrolyte for a Ceramic Fuel Cell
Citations: 49