Bei Li | Spectroscopy Analysis | Best Researcher Award

Prof. Bei Li | Spectroscopy Analysis
| Best Researcher Award

Prof. Bei Li | University of Chinese Academy of Sciences | China

Prof. Bei Li is a distinguished Research Scientist at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, and Chairman of Hooke Instruments Ltd. He has made pioneering contributions in spectroscopy, biophotonics, nonlinear optics, holography, and AI-based image processing. As Chief Scientist of national research programs and a recipient of prestigious honors including the National High-level Overseas Talent Award and the Jilin Provincial Outstanding Contribution Award, Prof. Li has demonstrated exceptional leadership in advancing optical science and its biomedical applications. He has successfully led six national-level and fourteen provincial-level projects, in addition to numerous municipal and industry collaborations, bridging fundamental science with practical innovation. His outstanding publication record includes 69 SCI-indexed papers, with citation metrics of 824 citations (h-index 17, i10-index 26, Google Scholar) and 516 citations from 427 documents with an h-index of 12 (Scopus). He also holds 27 granted patents and 14 new applications under review. Notably, his development of a microwell-assembled aluminum platform revolutionized single-cell Raman spectroscopy, enabling highly accurate cancer cell classification through machine learning integration. With deep collaborations spanning Cardiff University and Peking University, Prof. Li has advanced cross-disciplinary innovations of global significance, making him a strong candidate for the Best Researcher Award.

Profile: Google Scholar Scopus

Featured Publications

  • Li, B (2026). Deep learning-assisted Raman spectroscopy for rapid lactic acid bacteria identification at the colony level. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Advance online publication.

  • Li, B. (2025). Metabolic activity profiling of high-temperature Daqu microbiota using single-cell Raman spectroscopy and deuterium isotope probing. Analytical Chemistry. Advance online publication.

  • Li, B.,(2025). High-viability circulating tumor cells sorting from whole blood at single cell level using laser-induced forward transfer-assisted microfiltration. Advanced Science. Advance online publication.

  • Li, B., (2025). High-throughput compact Raman spectrometer based on polarization transformation: Development and biological trials. Optics and Lasers in Engineering. Advance online publication.

 

 

 

Bruna Carbas | Spectroscopy | Best Researcher Award

Dr. Bruna Carbas | Spectroscopy
| Best Researcher Award

Senior Technician | Mountain Research Center | Portugal

Dr. Bruna Carbas is a food scientist with a PhD in Agricultural Production Chains – from farm to fork, a Master’s in Food Safety, and a Bachelor’s in Food Science. Her career bridges advanced research and practical applications in food safety, nutrition, and cereal and legume science. She has worked with leading institutions such as the Polytechnic Institute of Bragança, the University of Trás-os-Montes and Alto Douro, and the National Institute for Agrarian and Veterinary Research. With expertise spanning nutritional and functional characterization, rheological profiling, and chromatographic analysis, she has contributed to innovation in food quality assessment. Bruna also brings consulting and teaching experience, supporting both academia and the agri-food industry.

Professional Profile

 Scopus | ORCID

Education

Dr. Bruna Carbas has a comprehensive academic background in food science and safety. She earned her PhD in Agricultural Production Chains – from farm to fork from the University of Trás-os-Montes and Alto Douro (UTAD), where she specialized in phytochemical and nutritional analysis of legumes using innovative infrared spectroscopy methods. Prior to her doctorate, she completed a Master’s degree in Food Safety, gaining strong expertise in microbiology, hygiene, and food quality assurance. Her academic foundation began with a Bachelor’s degree in Food Science, which provided core training in chemistry, biochemistry, and food technology. This progressive academic journey, combining theoretical knowledge and advanced analytical skills, has equipped her to excel in research, consultancy, and teaching across the agri-food sector.

Professional Experience

Dr. Bruna Carbas has over a decade of professional experience across research, academia, and consultancy. She has served as a Senior Technician at ESA-IPB, supporting laboratory classes in biochemistry, chemistry, and pharmaceutical sciences while participating in research and service analyses. As a Consultant at ADIVAT, she has guided agri-food companies in quality management and food safety compliance. Her research expertise was strengthened at INIAV, where she evaluated nutritional, rheological, and sensory properties of cereals and legumes, and at CITAB, where she analyzed phytochemicals and developed predictive models for food quality. She has also lectured at multiple polytechnic institutes, teaching food science, biotechnology, and safety. Her diverse experience reflects her leadership in both applied and academic food sciences.

Awards 

Dr. Bruna Carbas has been recognized with competitive research fellowships and academic appointments that highlight her scientific excellence. She was awarded a doctoral fellowship at CITAB (UTAD), where her work on legumes and infrared spectroscopy was highly regarded. She has also held long-term research fellowships at INIAV, contributing significantly to national projects on food quality and safety. Her selection as a guest lecturer at prestigious Portuguese polytechnic institutes further reflects recognition of her academic and professional merit. Additionally, her consultancy work with agri-food companies demonstrates her standing as a trusted expert in food safety. These honors collectively demonstrate her sustained impact on research, education, and industry, positioning her as a leader in food science.

Research Interests 

Dr. Bruna Carbas’s research focuses on the nutritional, functional, and rheological characterization of cereals and legumes, addressing both fundamental science and industrial applications. She has developed and implemented advanced analytical methodologies, including liquid chromatography, spectrophotometry, and infrared spectroscopy, to assess food quality parameters. Her work also emphasizes the construction of predictive models to evaluate nutritional value, anti-nutritional factors, and phytochemical composition, supporting innovation in food safety and product development. In addition to laboratory research, she has contributed to food safety assurance and hygiene practices, ensuring that findings benefit real-world agri-food systems. Her interdisciplinary research bridges chemistry, food technology, and nutrition, ultimately supporting healthier, safer, and more sustainable food production chains.

Publication Top Notes

    • Comparative Analysis of Maize Physico-Chemical Parameters and Mycotoxin Levels in Dual Environments .

    • Year: 2024

    • Development of Prediction Models for the Pasting Parameters of Rice Based on Near-Infrared and Machine Learning Tools .

    • Year: 2023

    • Assessment of Agricultural Practices for Controlling Fusarium and Mycotoxins Contamination on Maize Grains: Exploratory Study in Maize Farms .

    • Year: 2023
    • Potential of Legumes: Nutritional Value, Bioactive Properties, Innovative Food Products, and Application of Eco-friendly Tools for Their Assessment .

    • Year: 2023

    • Evaluation of Biobased Solutions for Mycotoxin Mitigation on Stored Maize.

    • Year: 2022

    • Assessment of Regulated Mycotoxins in Maize Harvested in Portugal .

    • Year: 2021

Conclusion 

Dr. Bruna Carbas is a highly qualified researcher whose academic achievements, practical innovations, and contributions to food safety and quality position her as a strong candidate for the Best Researcher Award. Her work reflects a meaningful balance between fundamental research and industrial application, particularly in food quality and safety critical areas in today’s global food system. With further emphasis on expanding international collaborations and increasing her research visibility, she has the potential to achieve even greater recognition as a leader in agricultural and food science research.

Larissa Magalhães de Almeida Melo | Analytical Chemistry | Women Researcher Award

Dr. Larissa Magalhães de Almeida Melo | Analytical Chemistry | Women Researcher Award

Pos doctor at Federal University of the Jequitinhonha and Mucuri Valleys | Brazil

Larissa Magalhães de Almeida Melo is a Brazilian researcher specializing in analytical and forensic chemistry, with an emphasis on electrochemical detection methods for drugs of abuse. She is currently pursuing her Ph.D. at the Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM) under Prof. Dr. Wallans Torres Pio dos Santos. Her doctoral research focuses on developing portable, field-deployable methods for drug screening. In 2024, she undertook a Sandwich Ph.D. program at Manchester Metropolitan University with Prof. Craig Banks, further advancing her work in colorimetric and electrochemical sensors. With over 160 citations and an H-index of 9, Larissa has contributed significantly to high-impact journals in analytical chemistry. She combines her expertise in electrochemical sensing, device fabrication, and forensic toxicology to innovate rapid and cost-effective screening technologies. Her international collaborations and technical contributions highlight her growing influence in modern forensic science and public health monitoring.

Professional Profile

Google Scholar

Orcid

Education 

Larissa Melo’s academic journey demonstrates a progressive dedication to chemistry and engineering. She is currently a Ph.D. fellow (2021–2025) at UFVJM in Brazil, where her research involves the development of portable methods for forensic drug detection. In 2024, she participated in a Sandwich Ph.D. at Manchester Metropolitan University under Prof. Craig Banks. Prior to her doctorate, she earned a Master’s degree in Analytical Chemistry (2019–2021) from UFVJM, where she developed a screening method for synthetic tryptamines. She also completed a Bachelor’s in Chemical Engineering (2018–2023) and another in Science and Technology (2014–2018) at UFVJM. Her foundational education includes a technical course in Electrical Technology (2010–2013) from the Federal Institute of Espírito Santo. This solid multidisciplinary background has equipped her with strong skills in analytical instrumentation, electrochemistry, materials science, and chemical engineering, all of which support her advanced research in forensic applications.

Professional Experience 

Larissa Melo brings strong academic and research experience, particularly in forensic electrochemistry. Her doctoral work (2021–2025) at UFVJM focuses on creating portable devices for the electrochemical detection of synthetic drugs. In 2024, she joined Manchester Metropolitan University under a Sandwich Ph.D. program, working with Prof. Craig Banks on hybrid sensor systems. During her Master’s (2019–2021), she developed a fast electrochemical method for tryptamine detection. She has co-authored over 20 peer-reviewed publications in top journals, often collaborating with multidisciplinary teams on drug screening innovations using screen-printed electrodes, colorimetric methods, and 3D-printed analytical tools. Larissa has also contributed to critical reviews and sensor fabrication methods. Her experience includes technical work with disposable electrodes, boron-doped diamond sensors, and voltammetry. Additionally, she’s actively involved in developing environmentally friendly, field-portable diagnostic tools. Larissa’s practical and collaborative work underscores her capability in applying chemistry to real-world forensic and public health challenges.

Awards and Honors 

While specific awards are not explicitly listed, Larissa Melo’s research impact and international engagements reflect significant academic recognition. She was competitively selected for a Sandwich Ph.D. fellowship at Manchester Metropolitan University (2024), a testament to her research excellence and international collaboration skills. Her publication record includes articles in top-tier journals such as Electrochimica Acta, Talanta, TrAC, and Sensors and Actuators B: Chemical, often as the first or lead author. She has amassed over 165 citations and holds an H-index of 9, highlighting her work’s influence in analytical and forensic chemistry. Larissa’s interdisciplinary research on electrochemical and colorimetric methods for drug detection showcases her contribution to forensic science innovation. Her rapid rise as a productive early-career researcher, mentorship by globally recognized experts like Prof. Wallans dos Santos and Prof. Craig Banks, and verified academic credentials on the Lattes platform further confirm her growing stature in scientific communities.

Research Interests 

Larissa Melo’s research interests center around analytical chemistry, electrochemical sensing, and forensic science. Her work focuses on the development of rapid, portable, and cost-effective electrochemical and colorimetric detection methods for drugs of abuse. She is particularly interested in screen-printed electrodes, boron-doped diamond sensors, and 3D-printed electrochemical cells to detect substances such as synthetic cathinones, cannabinoids, tryptamines, amphetamines, and hallucinogens. Her interdisciplinary approach combines chemical engineering principles, material science, and electroanalysis to improve point-of-care diagnostics. Larissa also explores hybrid detection platforms combining colorimetric and electrochemical signals, enhancing sensitivity and specificity for field-based forensic analysis. She contributes to critical reviews and technical innovations in clinical toxicology, pharmaceutical analysis, and biosensors. Her goal is to make analytical methods more accessible, environmentally friendly, and applicable in real-time settings, such as customs, crime scenes, and emergency rooms.

Publication Top Notes

  1. Portable analytical methods for detecting synthetic cannabinoid receptor agonists: a critical review

  2. A dual colorimetric-electrochemical platform based on bromocresol green for the selective detection of atropine

  3. Selective screening of synthetic cathinones, amphetamines, piperazines, and phenethylamines using voltammetry

  4. Electrochemistry of the synthetic tryptamine 5-MeO-MiPT at glassy carbon and screen-printed electrodes

  5. Novel colorimetric-electrochemical methods for selective identification and quantification of Scopolamine

  6. Use of a lab-made disposable screen-printed sensor with boron-doped diamond for N-ethylpentylone detection

  7. Combined colorimetric and electrochemical screening method for selective detection of MDMA

  8. Electrochemical methods for determination of acetaminophen in biological matrices: a critical review

  9. Selective screening of NBOHs, NBOMes, and LSD using a 3D-Printed electrochemical double cell

  10. Electrochemical detection of mephedrone using a graphene screen-printed electrode

  11. Electrochemical method for detecting synthetic cannabinoids in e-cigarette and biological samples

  12. Chemically deposited boron-doped diamond screen-printed electrodes for manganese detection

  13. Colorimetric-Electrochemical Combined Method for Detection of Drugs in Blotter Papers

  14. SMART 3D-printed electrochemical cell for on-site and forensic analysis

  15. Oxygen plasma-treated graphite sheet electrodes for methamphetamines

  16. Fast screening of MDEA using carbon screen-printed electrode and voltammetry

  17. Electrochemical detection of 1-benzylpiperazine on carbon screen-printed electrode

  18. Screening method for detection of 1-(3-chlorophenyl)piperazine in forensic samples

  19. Selective screening method for MDPT using carbon nanofiber screen-printed electrodes

  20. Detection of LSD in forensic samples using carbon nanotube screen-printed electrodes

  21. Detection of 2C-B using environmentally friendly screen-printed electrodes

  22. Professional biography of Dorothy Hodgkin – Contributions to Chemistry, Biology, and Biochemistry

Conclusion

Larissa Magalhães de Almeida Melo exemplifies the next generation of analytical chemists committed to real-world impact in forensic science. Her research bridges engineering and chemistry to develop innovative, portable, and sustainable methods for drug detection. With international experience, strong academic output, and cross-disciplinary skills, she is well-positioned for leadership in global forensic chemistry research.