Assoc. Prof. Dr. Hexin Zhang | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Hexin Zhang | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Hexin Zhang , Materials Chemistry ,  Harbin Engineering University, China

Dr. Hexin Zhang is an Associate Professor and Doctoral Supervisor at the School of Materials Science and Chemical Engineering, Harbin Engineering University. She holds a Doctorate in Engineering and has developed a robust academic profile in high-temperature materials and additive manufacturing. With over 60 peer-reviewed SCI-indexed publications and five invention patents, Dr. Zhang’s work significantly contributes to the field of advanced alloys and composite materials. She has successfully led numerous prestigious projects funded by the National Natural Science Foundation of China and other provincial and institutional bodies. As a guest editor for Metals and a senior member of the Chinese Society of Composite Materials, she plays an influential role in shaping research directions. Her ongoing projects involve cutting-edge research in nano-TiC reinforced molybdenum-based superalloys. Her leadership extends to military-grade materials research, and she currently spearheads a multi-million-yuan defense technology initiative with wide application potential in marine gas turbines.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Dr. Hexin Zhang is an Associate Professor and Doctoral Supervisor at Harbin Engineering University. She holds a Doctorate in Engineering and has extensive expertise in high-temperature composite materials, superalloys, and additive manufacturing—fields of critical importance in advanced materials research.With over 60 SCI-indexed publications, 5 invention patents, and 2 authored monographs, Dr. Zhang has demonstrated consistent and significant contributions to materials science. Her work addresses both fundamental science and industrial application challenges, particularly in marine gas turbines.She serves as Guest Editor for the journal Metals, is a Senior Member of the Chinese Society for Composite Materials, and holds leadership roles in multiple national professional organizations.Dr. Hexin Zhang’s exceptional track record in high-impact research, leadership in national-level projects, patent portfolio, and editorial and professional service make her a standout candidate for the “Best Researcher Award.” Her contributions align well with the award’s objective of honoring researchers who exhibit innovation, leadership, and societal impact through their work.

🎓Education:

Dr. Hexin Zhang pursued her Doctorate in Engineering with a specialization in materials science, focusing on the mechanical behavior and processing of high-temperature alloys. Her academic training emphasized advanced manufacturing techniques including additive manufacturing (AM) and laser-based fabrication technologies. Her graduate work laid the foundation for exploring novel metal matrix composites and developing expertise in microstructural analysis, thermal stability, and mechanical performance enhancement under extreme conditions. She was trained in a multidisciplinary environment, combining theoretical materials science with practical engineering and thermodynamic modeling. As a part of her academic journey, she engaged in collaborative lab work, conference presentations, and published extensively in SCI-indexed journals, honing both technical skills and academic writing. Her formal education and consistent excellence have positioned her as a specialist in nickel-based and molybdenum-based superalloys, enabling her to tackle real-world challenges in aerospace and marine turbine applications.

🏢Work Experience:

Dr. Zhang currently serves as Associate Professor and Doctoral Supervisor at Harbin Engineering University. With extensive experience leading and contributing to key research projects, she has spearheaded over ten major scientific initiatives, including two funded by the National Natural Science Foundation of China and one basic research project targeting the processing of molybdenum-based materials. She has published over 60 high-impact SCI papers, secured 5 national patents, and authored 2 technical monographs. As the principal investigator of a military-focused project supported by the Central Military Commission, she managed a 2-million-yuan segment of a larger 7.5-million-yuan initiative. In addition to her research contributions, she serves as a guest editor for the journal Metals and has held important roles in several academic committees. Her hands-on expertise covers nano-reinforced materials, additive manufacturing, and failure analysis under thermo-mechanical fatigue.

🏅Awards: 

Dr. Hexin Zhang has received multiple accolades for her contributions to materials science and engineering. She has been honored with competitive research grants from the National Natural Science Foundation of China, a testament to her innovative work in the field. She also serves in distinguished capacities including Senior Member of the Chinese Society of Composite Materials and Director of the Ecological Civilization Branch of the China Association of Higher Education. In recognition of her academic leadership and commitment to advancing materials research, she was appointed as a Member of the Materials Gene Engineering Expert Committee of the National Materials and Devices Scientists Think Tank. Additionally, her editorial role for Metals highlights her influence in peer-reviewed publishing. Her work in defense applications of high-temperature materials has further earned her distinction in government and institutional circles.

🔬Research Focus:

Dr. Zhang’s research focuses on the design, processing, and performance of nickel-based and molybdenum-based super alloys, especially for high-temperature and corrosive environments. She specializes in additive manufacturing techniques, particularly laser selective melting and nano-TiC reinforcement, to enhance mechanical strength and thermal resistance. Her investigations include thermo-mechanical fatigue, oxidation resistance, and hot corrosion mechanisms, crucial for the development of next-generation aerospace and marine turbine materials. A highlight of her work is the innovation in laser forming of Mo-based superalloys, solving issues like brittle fracture at room temperature. Her projects, including those funded by the Central Military Commission, involve cutting-edge structural materials aimed at military propulsion systems. Dr. Zhang also integrates computational modeling and experimental validation to understand microstructural evolution and failure modes under extreme conditions.

Publication Top Notes:

1. Impact of Secondary γ’ Precipitate on the High-Temperature Creep Properties of DD6 Alloy

2. Microstructural Evolution and Its Effect on Tensile Properties of 10Cr-2W-3Co Martensitic Steel During Thermal Exposure

3. Microstructure Evolution and Mechanical Properties of Ti-6Al-4V Alloy Fabricated by Directed Energy Deposition Assisted with Dual Ultrasonic Vibration

Citations: 2

4. Effect of Powder Particle Size on the Microscopic Morphology and Mechanical Properties of 316L Stainless Steel Hollow Spheres

5. Study on Hot-Compressive Deformation Behavior and Microstructure Evolution of 12Cr10Co3MoWVNbNB Martensitic Steel

6. Lattice Disorder Driving the Electron Migration from Tetracycline to TiO₂ via Ligand-to-Metal Charge Transfer to Generate Superoxide Radical

Citations: 2

7. Hydrangea-like MnO₂@Sulfur-Doped Porous Carbon Spheres with High Packing Density for High-Performance Supercapacitor

Citations:

8. La Doped-Fe₂(MoO₄)₃ with the Synergistic Effect Between Fe²⁺/Fe³⁺ Cycling and Oxygen Vacancies Enhances the Electrocatalytic Synthesizing NH₃

9. Influence of Aging Heat Treatment on Microstructure and Mechanical Properties of a Novel Polycrystalline Ni₃Al-Based Intermetallic Alloy

Citations:

Assoc. Prof. Dr. Mohamed Ebrahim | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Mohamed Ebrahim | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Mohamed Ebrahim | Materials Chemistry |Solid State Physics research at National Research Center, Egypt

M. R. Ebrahim, born in Giza, Egypt, is a distinguished researcher in solid-state physics at the National Research Centre (NRC), Egypt. He obtained his Ph.D. in Experimental Physics from Mansoura University, specializing in the synthesis and preparation of Al/Ru bi-layers. His expertise lies in severe plastic deformation (SPD) and surface mechanical alloying (SMA) of aluminum. He has significantly contributed to materials science with innovations such as Surface Mechanical Attrition Treatment (SMAT), for which he holds a patent. His research has advanced aluminum composites, corrosion resistance, and electrochemical behavior, leading to applications in supercapacitors, coatings, and energy storage devices. He has authored numerous publications in high-impact journals and collaborates internationally in materials engineering. His work integrates theoretical physics with experimental applications, contributing significantly to nanomaterials, electrochemistry, and advanced materials.

Professional Profile :         

Orcid

Scope  

Summary of Suitability for Award:

M. R. Ebrahim is a highly accomplished researcher specializing in solid-state physics, severe plastic deformation (SPD), and surface mechanical alloying (SMA). His groundbreaking innovations, such as Surface Mechanical Attrition Treatment (SMAT), have significantly advanced materials science, particularly in supercapacitor development, corrosion resistance, and electrochemical behavior. His patents, numerous high-impact publications, and contributions to industrial and academic research demonstrate his expertise and leadership in his field. He has successfully bridged the gap between theoretical physics and applied materials engineering, leading to practical advancements in nanomaterials and surface engineering. His active involvement in research collaborations, peer reviewing, and international conferences further strengthens his candidacy for this prestigious award. M. R. Ebrahim’s research excellence, technological innovations, and impactful contributions to materials science make him a highly deserving candidate for the “Best Researcher Award.” His patents, publications, and pioneering work in surface engineering and electrochemistry showcase his ability to drive scientific progress and innovation. Recognizing his achievements would honor his dedication to advancing materials science and inspire further groundbreaking research in the field.

🎓Education:

M. R. Ebrahim pursued his academic journey in physics, starting with a B.Sc. in Physics from Helwan University, Egypt. He furthered his studies with a Ph.D. in Experimental Physics from Mansoura University, focusing on synthesis and preparation of Al/Ru bi-layers. His doctoral research emphasized surface modifications, mechanical alloying, and electrochemical properties of aluminum-based materials. His educational background laid a strong foundation for his work in severe plastic deformation (SPD), surface engineering, and supercapacitor technology. His studies encompassed various aspects of solid-state physics, nanomaterials, and electrochemical behavior. With extensive laboratory experience, he gained expertise in materials characterization, thin-film coatings, and corrosion-resistant materials. His education has driven his innovations in advanced materials processing, mechanical attrition, and novel composite development, enabling him to make significant contributions to materials science and industrial applications.

🏢Work Experience:

M. R. Ebrahim has been a Researcher in Solid-State Physics at NRC, Egypt, since 2010, working extensively on surface mechanical alloying, corrosion resistance, and severe plastic deformation of aluminum-based materials. His research focuses on enhancing the mechanical, electrical, and electrochemical properties of metals for various applications. He pioneered SMAT technology for material surface modifications, significantly improving supercapacitor performance, dielectric properties, and composite coatings. His collaborations extend internationally, engaging in projects related to nano-coatings, energy storage, and metal reinforcement techniques. He has contributed to industrial advancements by integrating electrochemical engineering with material science, leading to innovative solutions for corrosion-resistant and high-performance aluminum materials. He actively publishes, reviews scientific papers, and participates in global conferences, sharing his expertise in materials modification, nanostructured composites, and energy applications. His work bridges the gap between fundamental physics and practical material applications, driving progress in advanced alloy engineering.

🏅Awards: 

M. R. Ebrahim has received several prestigious recognitions for his outstanding contributions to solid-state physics, surface mechanical alloying, and severe plastic deformation. He has been acknowledged for his innovative patents, including the “Machine for Surface Mechanical Attrition Treatment (SMAT)” and “Supercapacitors Construction from Fiberglass through Surface Mechanical Alloying.” These innovations were recognized by the Egyptian Scientific Research Academy, highlighting their significance in advancing materials science and energy storage technologies. His research excellence has also earned him invitations to international conferences, peer-reviewing roles in high-impact journals, and collaborations with leading institutions. His contributions to corrosion resistance, electrochemical behavior, and composite materials have been widely cited, further solidifying his reputation as a leading researcher in his field. His dedication to applied physics and engineering continues to influence modern materials science, making him a strong contender for prestigious scientific awards and fellowships.

🔬Research Focus:

M. R. Ebrahim’s research is centered on solid-state physics, surface engineering, and severe plastic deformation (SPD) to enhance material properties. His work on surface mechanical alloying (SMA) and surface mechanical attrition treatment (SMAT) has led to significant advancements in corrosion resistance, mechanical strength, and electrical properties of aluminum-based materials. A key aspect of his research is the development of supercapacitors using fiberglass and aluminum composites, which has implications for energy storage and electronic applications. His studies also explore electrochemical behavior, dielectric permittivity, and microstructural evolution in materials subjected to mechanical treatments. By integrating experimental physics with material science, he has successfully introduced innovative methodologies to modify and enhance material surfaces for industrial and technological applications. His contributions are particularly impactful in nanomaterials, thin films, and composite materials, where his work continues to drive new advancements in materials engineering and applied physics.

Publication Top Notes:

  • “Electrical properties of Al-Si surface composites through surface mechanical alloying on severe plastic deformed Al substrates”

  • “Mechanical treatment of aluminum plate surfaces for improvements of capacitance and dielectric permittivity”

  • “Corrosion behavior of aluminum-Fiber Glass composite fabricated through surface mechanical alloying in alkaline media”

  • “Electrochemical behavior of Al₂O₃/Al composite coated Al electrodes through surface mechanical alloying in alkaline media”

  • “Terahertz acoustic phonon detection from a compact surface layer of spherical nanoparticles powder mixture of aluminum, alumina and multi-walled carbon nanotube”

  • “Improving corrosion resistance of Al through severe plastic deformation 1-under free condition”

  • “Improving corrosion resistance of Al through severe plastic deformation 2-under accelerated condition”

  • “Spectroscopic Analysis of Severe Plastically Deformed Raw Al Rolled Sheet”

  • “Microstructure and Microhardness Evolutions of High Fe Containing Near-Eutectic Al-Si Rapidly Solidified Alloy”

  • “Microstructure and microhardness evolution of melt-spun Al-Si-Cu alloy”

  • “Study of Phase Evolution in Sputtered Al/Ru Bi-layers Nanocrystalline Thin Films”