Dr. Yinfu Luo | Polymer Chemistry | Material Chemistry Award

Dr. Yinfu Luo | Polymer Chemistry | Material Chemistry Award

Dr. Yinfu Luo , Polymer Chemistry, Associate Professor at Sichuan University, China 

Dr. Yinfu Luo is an Associate Professor at the State Key Laboratory of Advanced Polymer Materials, Sichuan University. His research focuses on flame retardancy and high-performance modification of polyimide and polyurethane, as well as ablation and heat resistance of phenolic resin and silicone rubber. Dr. Luo has contributed to the development of advanced polymer materials with enhanced thermal stability and mechanical properties, addressing critical challenges in aerospace and defense applications. His work has been published in reputable journals, reflecting his commitment to advancing polymer science and engineering.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Yinfu Luo’s research is deeply rooted in the chemistry of advanced polymer materials, particularly focusing on polyimides, polyurethanes, phenolic resins, and silicone rubbers. His work addresses crucial challenges in the synthesis, modification, and performance enhancement of these materials. A significant part of Dr. Luo’s research involves flame retardancy and high-performance modifications to improve the heat resistance and mechanical properties of polymers—key issues in material chemistry with applications in aerospace, defense, and electronics. Dr. Luo’s consistent publication in prestigious journals like Industrial & Engineering Chemistry Research, Polymer, and Journal of Applied Polymer Science demonstrates recognition and impact within the material chemistry community. Dr. Yinfu Luo exemplifies the qualities that the “Material Chemistry Award” aims to recognize: innovative research, strong scientific contributions, and practical advancements in polymer material chemistry. His expertise in flame retardant polymers and thermal-resistant materials, combined with a robust publication record and focus on real-world applications, makes him a highly suitable candidate. Awarding Dr. Luo would acknowledge his valuable contributions to advancing the frontiers of material chemistry and inspire continued innovation in the field.

🎓Education:

Dr. Luo completed his undergraduate studies in Materials Chemistry at Zhengzhou University from 2012 to 2016. He then pursued a Master’s degree in Materials Science at the Polymer Research Institute of Sichuan University from 2016 to 2019. Continuing at the same institute, he earned his Ph.D. in Materials Science between 2019 and 2022. His academic journey has been marked by a strong focus on polymer materials, laying a solid foundation for his subsequent research endeavors.

🏢Work Experience:

Since July 2022, Dr. Luo has been serving as a full-time postdoctoral researcher at the Polymer Research Institute of Sichuan University. In this role, he has been actively involved in projects related to the design and fabrication of high-performance polymer foams and resins. His work includes the development of green flame-retardant polyurethane foams and high-strength rigid polyimide materials, contributing to national projects in aerospace and defense sectors.

🏅Awards: 

While specific awards and honors are not listed in the available information, Dr. Luo’s contributions to polymer science, particularly in the development of flame-retardant and high-performance materials, have been recognized through publications in esteemed journals and involvement in significant national projects. His work supports critical applications in aerospace and defense, indicating a high level of trust and recognition in his expertise.

🔬Research Focus:

Dr. Luo’s research centers on the development of advanced polymer materials with enhanced thermal and mechanical properties. His work includes the design and synthesis of flame-retardant polyurethane foams, high-strength polyimide foams, and heat-resistant phenolic resins. By constructing dual crosslinking network structures and exploring active crosslinking strategies, he aims to improve the performance of polymer foams for applications in extreme environments. His research addresses the need for materials that can withstand high temperatures and mechanical stress, particularly in aerospace and defense industries.

Publication Top Notes:

1. Constructing a Carborane-Hybridized Cross-Linked Network Endows Phenolic Resin with Excellent Structural Thermo-Oxidative and Ablative Resistance

2. Constructing Layered Structure Improves Thermal Protection Performance of Silicone Rubber-Based Composites under Coupled Mechanical-Thermal-Oxidative Conditions

3. Lightweight Copolymerized Polyimide Foams Containing Trifluoromethyl and Siloxane Moieties for Thermal Insulation and Hydrophobic Applications

4. Tunable 1T-Phase MoS₂/CNT Reinforced Carbon Foams for Enhanced Low-Frequency Electromagnetic Wave Absorption

5. Fabrication of Lightweight Polyimide Aerogels with Excellent Mechanical and Thermal Properties by Changing the Dianhydride Structures

 

 

Mrs. Katsiaryna Khainskaya | Polymer Chemistry | Best Researcher Award

Mrs. Katsiaryna Khainskaya | Polymer Chemistry | Best Researcher Award

Mrs. Katsiaryna Khainskaya , Polymer Chemistry , Junior researcher at Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Belarus

Katsiaryna Khainskaya 🇧🇾 is a dynamic Junior Researcher at the Institute of Chemistry of New Materials, National Academy of Sciences of Belarus. With a strong foundation in chemistry and nanotechnology, she specializes in synthesizing polysaccharide derivatives with phenolic acids for advanced biomedical applications. Fluent in Russian and Belarusian, and proficient in English, she brings interdisciplinary expertise to the development of functional materials for drug delivery. She is skilled in atomic force microscopy, dynamic light scattering, spectrophotometry, and colloidal chemistry. Her active participation in international conferences and collaborative research projects highlights her global scientific engagement. A member of the Council of Young Scientists, she contributes to innovations in biopolymer-based materials and encapsulation techniques. Her recent work includes the development of multifunctional wound-healing agents and nanocomposites with synergistic antibacterial effects. Passionate, analytical, and dedicated, Katsiaryna is emerging as a promising scientist in the fields of nanobiomaterials and nanochemistry.

Professional Profile :         

Orcid 

Summary of Suitability for Award:

Katsiaryna Khainskaya, a promising junior researcher at the Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, has demonstrated a deep commitment to advancing nanobiomaterials and polysaccharide-based functional systems. Her research combines interdisciplinary expertise in nanotechnology, colloidal chemistry, radiation chemistry, and biomedicine. She has contributed to several innovative projects involving chitosan derivatives, silver nanoparticles, and mucoadhesive systems for drug delivery and wound healing. . She has actively participated in international conferences, received a research diploma, and is involved in multiple ongoing projects aimed at developing smart, sustainable biomedical materials. Her technical skills span AFM, DLS, lyophilization, and spectroscopy, evidencing strong laboratory proficiency. Katsiaryna Khainskaya is a highly suitable candidate for the “Best Researcher Awards”. Despite being early in her career, her research demonstrates innovation, interdisciplinarity, and societal relevance. Her contributions to nanobiomaterials and biomedical polymers are not only academically sound but hold translational potential for healthcare applications. She exemplifies the qualities of a rising scientific leader and merits recognition for her impactful and forward-thinking research.

🎓Education:

Katsiaryna earned her degree in Chemistry from Belarusian State University (2018–2023), with a specialization in radiation chemistry and environmental sciences.  Her academic training covered a comprehensive range of subjects including inorganic, organic, analytical, and physical chemistry, alongside advanced topics such as nanochemistry, dosimetry, colloidal chemistry, and radiation safety. Her thesis focused on the “Preparation and properties of complexes based on alginate-Ag nanocomposites with enrofloxacin,” combining nanotechnology and pharmacology. She also undertook specialized professional development, including a certificate program on radioactive waste processing (Rosatom Technical Academy, 2021) and a 2024 seminar on mucoadhesive chitosan nanoparticles at the Institute of High Molecular Compounds, St. Petersburg.  Her interdisciplinary education has equipped her with the necessary theoretical and technical skills to contribute to the development of innovative drug delivery systems and advanced materials for biomedical and environmental applications.

🏢Work Experience:

Katsiaryna Khainskaya began her research career as a Trainee Junior Researcher at the Institute of Chemistry of New Materials of the NAS of Belarus in April 2023, quickly progressing to Junior Researcher by August 2023.Her core responsibilities include the synthesis of polysaccharide derivatives and their functional characterization using techniques such as AFM, optical microscopy, and electrophoretic mobility. She has hands-on experience in developing colloidal systems with silver nanoparticles for drug delivery and encapsulation of biologically active substances. As a member of the Council of Young Scientists, she also engages in research planning and youth science promotion. Her projects span antibiotic nanocomposites for aquaculture, antioxidant-rich biopolymer carriers, and mucoadhesive biomedical coatings. She has presented her work at international conferences in Spain, Russia, and across Belarus and Tajikistan. Her dedication and rapid growth reflect a strong commitment to scientific excellence and interdisciplinary collaboration.

🏅Awards: 

Katsiaryna has received multiple recognitions for her scientific contributions  In January 2025, she secured 3rd place in the “Young Scientist of the IChNM of NAS of Belarus” competition. She earned a professional development certificate from Rosatom Technical Academy in radioactive waste treatment (2021)  and has participated in several prestigious conferences and training events. Notable among them are her presentation at the 13th International Colloids Conference in Spain (2024)  and her active participation in youth science forums, such as “Youth in Science” (2023, 2024) and the School of Chemists of the CIS in Dushanbe (2023).She also took part in Belarus State Technological University’s 89th faculty conference (2025), showcasing smart multilayer biomedical coatings. Each recognition reflects her active engagement with contemporary chemical research and her growing reputation in the field of functional nanobiomaterials and nanotechnology.

🔬Research Focus:

Katsiaryna’s research is centered on the synthesis and application of polysaccharide-based nanomaterials, particularly chitosan and alginate derivatives. Her work focuses on combining these biopolymers with phenolic acids and silver nanoparticles to create functional materials with enhanced antioxidant, antimicrobial, and drug delivery capabilities. She has developed systems for encapsulating biologically active compounds to improve their stability and targeted delivery, contributing to innovative wound healing and antibacterial treatments.  Her current projects include multilayer mucoadhesive patches for oral diseases, encapsulated chlorophyll systems, and antimicrobial nanocomposites for aquaculture. She’s also involved in industrial collaborations, such as the development of holographic foil materials.  Her interdisciplinary approach integrates chemistry, nanotechnology, and biology, aiming to create next-generation biofunctional materials for environmental, medical, and pharmaceutical applications. Her contributions are paving the way for biopolymer innovations in healthcare and sustainable material science.

Publication Top Notes:

1. Chitosan-Gallic Acid Conjugate with Enhanced Functional Properties and Synergistic Wound Healing Effect

2. Study of the Interaction Between Biogenic Alginate-Ag Nanoparticles and Enrofloxacin: Combinatory Antibacterial Effect and Nanocomposite Formation