Prof. Dr. Vânia Caldas Sousa | Materials Chemistry | Material Chemistry Award

Prof. Dr. Vânia Caldas Sousa | Materials Chemistry | Material Chemistry Award

Prof. Dr. Vânia Caldas Sousa | Materials Chemistry | Professor at UFRGS/DEMAT , Brazil 

Vânia Caldas de Sousa is a distinguished Professor Titular at the Universidade Federal do Rio Grande do Sul (UFRGS), Brazil. She specializes in materials engineering, with a focus on non-metallic materials, ceramics, and advanced processing techniques. With a prolific research career spanning decades, she has contributed significantly to the synthesis of ceramic materials, particularly in ZnO-based varistors and refractory composites. She has conducted postdoctoral research at renowned institutions such as the University of California, Davis, Instituto de Cerámica y Vidrio (Spain), and Universidade Federal de São Carlos (UFSCar). Her work has been widely recognized through numerous publications, research projects, and academic contributions. She has played a key role in mentoring young researchers and developing innovative approaches in materials engineering. As an active academic, she has been dedicated to advancing knowledge in ceramic materials, their processing, and their applications in various engineering fields.

Professional Profile :

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Vânia Caldas de Sousa is a distinguished researcher in Materials Chemistry, specializing in ceramics, varistors, and composite materials. With a Ph.D. in Science and Engineering of Materials from the Federal University of São Carlos (UFSCar), her research has significantly advanced the synthesis and processing of ceramic materials. Her expertise in combustion synthesis, refractory materials, and electrical ceramics aligns perfectly with the award’s focus on innovative contributions to materials chemistry. Dr. Vânia Caldas de Sousa is highly suitable for the “Material Chemistry Award” due to her extensive research in materials chemistry, particularly in ceramic materials, varistors , and chemical synthesis techniques. Her academic leadership, international collaborations, and impactful publications make her an outstanding candidate for this prestigious recognition.

🎓Education:

Vânia Caldas de Sousa holds a Ph.D. in Materials Science and Engineering from Universidade Federal de São Carlos (UFSCar), Brazil, where she worked on the synthesis of ZnO-based varistors through combustion reaction techniques. Her doctoral research significantly contributed to understanding chemical synthesis methods for ceramic materials. She earned her master’s degree from the same institution, focusing on the preparation and characterization of mullite-cordierite composites for refractory applications. She completed her undergraduate degree in Materials Engineering at Universidade Federal da Paraíba (UFPB), where she developed a strong foundation in materials science and processing. Throughout her academic journey, she has pursued multiple short courses and training programs, covering topics such as biomaterials, ceramic processing, phase diagrams, and surface analysis. Her continuous academic development has been complemented by postdoctoral research experiences at leading global institutions, enhancing her expertise in advanced materials engineering and ceramic technologies.

🏢Work Experience:

Vânia Caldas de Sousa is a Professor Titular at Universidade Federal do Rio Grande do Sul (UFRGS), where she leads research in materials science, particularly focusing on ceramic materials, synthesis techniques, and powder processing. She has held this position for several years, actively contributing to research and academic programs. She has taught courses at both undergraduate and postgraduate levels, including subjects like Advanced Ceramics, Science of Materials, and Mechanical Construction Materials. Additionally, she has mentored numerous graduate students in research projects related to ceramic materials and their applications. Her international research collaborations have included postdoctoral stints at the University of California, Davis, and Instituto de Cerámica y Vidrio (Spain). She has also been involved in various funded research projects, contributing to advancements in materials engineering, and has worked extensively on developing innovative ceramic materials with applications in energy storage, electronics, and structural components.

🏅Awards: 

Vânia Caldas de Sousa has received multiple awards and recognitions for her contributions to materials science and engineering. She has been honored with research grants and fellowships from esteemed organizations, including the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Her research excellence has been acknowledged through invitations to speak at international conferences and workshops. She has been recognized for her outstanding mentorship of graduate students, fostering innovation and development in ceramic materials. Her work has been featured in prestigious scientific journals, and she has received distinctions for her contributions to the advancement of non-metallic materials. Through her active involvement in academia, she has played a crucial role in shaping the future of materials engineering, earning respect and accolades from the scientific community.

🔬Research Focus:

Vânia Caldas de Sousa’s research revolves around the synthesis, processing, and characterization of ceramic materials. She specializes in powder synthesis techniques, including combustion reactions, for developing high-performance ceramics. Her work has contributed significantly to the understanding of ZnO-based varistors, which are essential for electronic applications. She is also deeply involved in the study of refractory materials, particularly mullite-cordierite composites, for high-temperature applications. Another key aspect of her research is the development of advanced ceramic processing techniques, including thermal analysis and phase equilibrium studies. Her investigations into the electrical and optical properties of inorganic materials have further expanded the applications of engineered ceramics. She collaborates with international institutions to explore innovative solutions in materials science, emphasizing energy efficiency, sustainability, and industrial applications of ceramic materials. Her research aims to bridge the gap between fundamental science and technological advancements in material engineering.

Publication Top Notes:

Characterization of silica produced from rice husk ash: comparison of purification and processing methods

Authors: IJ Fernandes, D Calheiro, FAL Sánchez, ALD Camacho, TLAC Rocha, VC Sousa

Citations: 189

Year: 2017

Combustion synthesized ZnO powders for varistor ceramics

Authors: VC Sousa, AM Segadaes, MR Morelli, R Kiminami

Citations: 179

Year: 1999

Recent research developments in SnO2-based varistors

Authors: MR Cássia-Santos, VC Sousa, MM Oliveira, FR Sensato, WK Bacelar, …

Citations: 105

Year: 2005

Magnetic and Mössbauer behavior of the nanostructured MgFe2O4 spinel obtained at low temperature

Authors: S Da Dalt, AS Takimi, TM Volkmer, VC Sousa, CP Bergmann

Citations: 95

Year: 2011

The effect of Ta2O5 and Cr2O3 on the electrical properties of TiO2 varistors

Authors: VC Sousa, ER Leite, JA Varela, E Longo

Citations: 59

Year: 2002

Combustion process in the synthesis of ZnO–Bi2O3

Authors: VC de Sousa, MR Morelli, RHG Kiminami

Citations: 58

Year: 2000

Physical, chemical and electric characterization of thermally treated rice husk ash and its potential application as ceramic raw material

Authors: IJ Fernandes, FAL Sánchez, JR Jurado, AG Kieling, TLAC Rocha, VC Sousa

Citations: 56

Year: 2017

Influence of fuel on morphology of LSM powders obtained by solution combustion synthesis

Authors: DP Tarragó, C de Fraga Malfatti, VC de Sousa

Citations: 48

Year: 2015

Study of structural and optical properties of ZnO nanoparticles synthesized by an eco-friendly tapioca-assisted route

Authors: WL de Almeida, NS Ferreira, FS Rodembusch, VC de Sousa

Citations: 38

Year: 2021

Eco-friendly and cost-effective synthesis of ZnO nanopowders by Tapioca-assisted sol-gel route

Authors: WL de Almeida, FS Rodembusch, NS Ferreira, VC de Sousa

Citations: 34

Year: 2020

Microstructure and electrical properties of (Ta, Co, Pr) doped TiO2 based electroceramics

Authors: VC Sousa, MM Oliveira, MO Orlandi, E Longo

Citations: 32

Year: 2010

Nonlinear behavior of TiO2· Ta2O5· MnO2 material doped with BaO and Bi2O3

Authors: MRD Bomio, VC Sousa, ER Leite, JA Varela, E Longo

Citations: 32

Year: 2004

Electrical Properties of La0.6Sr0.4Co1–yFeyO3 (y = 0.2–1.0) Fibers Obtained by Electrospinning

Authors: M Lubini, E Chinarro, B Moreno, VC de Sousa, AK Alves, CP Bergmann

Citations: 30

Year: 2015

Tertiary urban wastewater treatment with microalgae natural consortia in novel pilot photobioreactors

Authors: EG de Morais, JCA Marques, PR Cerqueira, C Dimas, VS Sousa, …

Citations: 27

Year: 2022

Dr. franck camerel | Materials Chemistry | Best Researcher Award

Dr. franck camerel | Materials Chemistry | Best Researcher Award

Dr. franck camerel , Institut des Sciences Chimiques de Rennes ,University of Rennes 1 , France

Franck Camerel is a distinguished chemist specializing in materials chemistry, currently serving as a CNRS Director (DR2) at the Institut des Sciences Chimiques de Rennes, France. With expertise in molecular organic and inorganic chemistry, his research spans composite materials, polymers, colloids, and functional gelating molecules. He has contributed significantly to the synthesis of liquid crystalline molecules for optoelectronic and biomedical applications. His work has been published in high-impact journals, including Nature, Angewandte Chemie, and JACS, reflecting his influence in the field. With an H-index of 33 and over 3,694 citations, he has mentored numerous Ph.D. students and secured prestigious grants. In addition to research, he serves as an Associate Editor for Molecules and plays a key role in Ph.D. mediation at ISCR. His interdisciplinary research is at the forefront of photothermal materials, metallomesogens, and stimuli-responsive molecules.

Professional Profile:

Scopus 

Summary of Suitability for Award:

Dr. Camerel Franck is a highly accomplished chemist specializing in material chemistry, liquid crystals, optoelectronics, and photothermal applications. His research contributions have significantly advanced molecular organic and inorganic chemistry, leading to innovations in drug delivery, photothermal therapy, and data storage. As a CNRS Director (DR2) at the Institut des Sciences Chimiques de Rennes, he has demonstrated leadership in pioneering research and mentoring future scientists.Given his groundbreaking research, significant scientific contributions, and leadership in materials chemistry, Dr. Camerel Franck is a highly deserving candidate for the “Best Researcher Award.” His innovations in photothermal therapy, optoelectronic materials, and molecular self-assembly have made substantial impacts in both fundamental science and applied research. His recognition by international research bodies and extensive publication record further establish his excellence in the field.

🎓Education:

Franck Camerel obtained his Ph.D. in Materials Chemistry (2001) from the University of Nantes, France, under the supervision of Dr. Patrick Batail. His doctoral research focused on the design and synthesis of advanced materials chemistry with unique optoelectronic properties. He later pursued a postdoctoral fellowship (2001–2003) at the prestigious Max-Planck Institute of Potsdam, Germany, under Dr. Markus Antonietti, where he gained expertise in soft matter, polymer chemistry, and nanomaterials. In 2012, he completed his Habilitation à Diriger des Recherches (HDR) at the University of Rennes, a qualification that enabled him to independently supervise doctoral research. His education and training have provided a solid foundation in molecular chemistry, leading to innovative research in liquid crystals, metallomesogens, organogelators, and photothermal materials. His work has significantly contributed to the development of functional nanomaterials for optoelectronic and biomedical applications, earning him recognition in the scientific community.

🏢Work Experience:

Franck Camerel is currently a CNRS Director (DR2) at the Institut des Sciences Chimiques de Rennes, France, where he leads research in functional molecular materials, liquid crystals, and photothermal nanomaterials. Before this role, he worked as a CNRS Researcher (CR) at the University of Rennes 1 and the University of Strasbourg, where he contributed to the synthesis and characterization of innovative materials for optoelectronic, biomedical, and data storage applications. His postdoctoral fellowship (2001–2003) at the Max-Planck Institute of Potsdam, Germany, under Dr. Markus Antonietti, strengthened his expertise in polymer chemistry, self-assembling nanomaterials, and photothermal materials. Over the years, he has supervised multiple Ph.D. students and postdoctoral researchers, helping shape the next generation of scientists. In addition to research, he is actively involved in scientific publishing, serving as an Associate Editor for Molecules (MDPI), Materials Chemistry Section, and manager of the Ph.D. mediation unit at ISCR.

🏅Awards: 

Franck Camerel has received several prestigious awards and research grants. In 2010, he was awarded the Région Bretagne (Stratégie et Attractivité Durable) Grant, recognizing his contributions to sustainable research. In 2011, he secured funding from Rennes Métropole as part of the Emerging Senior Researcher project. His innovative research led to funding from the Agence Nationale de la Recherche (ANR) 2020 PRC, CE24 (3D-ODS), supporting cutting-edge studies in molecular self-assembly and optoelectronic applications. Additionally, his contributions to cancer research have been recognized with grants from the Ligue contre le Cancer in 2018 and 2022, funding his work on photothermal therapy and drug delivery systems. These awards reflect his pioneering research in material chemistry, emphasizing his impact on scientific advancements in functional materials, biomedical applications, and nanotechnology.

🔬Research Focus:

Franck Camerel’s research spans molecular chemistry, functional materials, and nanotechnology, focusing on the synthesis of liquid crystalline molecules with chelating fragments that organize metals into unique molecular architectures. He has pioneered the development of metallomesogens and metallogelators, materials with exceptional optical and electronic properties for data storage, anticounterfeiting, and optoelectronic applications. His work also explores stimuli-responsive organogelators, which react to light, heat, and electric fields, offering potential in smart materials. A major aspect of his research is the synthesis of water-soluble metal complexes with strong near-IR absorption, enabling photothermal therapy and photocontrolled drug delivery. His studies extend to photothermoresponsive polymers, which utilize metal cross-linkers to create adaptable materials. His multidisciplinary research integrates organic, inorganic, and polymer chemistry, leading to breakthroughs in functional materials with applications in biomedicine, electronics, and nanotechnology.

Publication Top Notes:

Multiphoton-And SHG-Active Pyrimidine-Based Liquid Crystalline Thin Films Toward 3D Optical Data Storage

Authors: P. Nicolas, Prescillia; C. Minon, Célia; S. Abdallah, Stéphania; S. van Cleuvenbergen, Stijn; F. Camerel, Franck

Journal: Advanced Optical Materials

Year: 2025

Citations: 0

Porous N-Doped Carbon-encapsulated Iron as Novel Catalyst Architecture for the Electrocatalytic Hydrogenation of Benzaldehyde

Authors: F. Pota, Filippo; M.A. Costa de Oliveira, Maida Aysla; C. Schröder, Christian; F. Barrière, Frédéric; P.E. Colavita, Paula E.

Journal: ChemSusChem

Year: 2025

Citations: 0

Smart design of highly luminescent octupolar mesogenic tetra styryl-alkynyl bipyrimidine-based chromophores presenting non-linear optical properties

Authors: D. Vardar, Deniz; S. Abdallah, Stéphania; R. Mhanna, Rana; F. Camerel, Franck; H. Akdaş Kılıç, Huriye

Journal: Dyes and Pigments

Year: 2024

Citations: 0

Self-assembly properties of zinc(ii) complexes with azo ligands grafted with dodecyl chains: towards supramolecular materials driven by coordination and hydrophobic effect

Authors: K. Gak Simić, Kristina; I.S. Đorđević, Ivana S.; A.D. Mašulović, Aleksandra D.; F. Camerel, Franck; N.P. Trišović, Nemanja P.

Journal: CrystEngComm

Year: 2024

Citations: 0

Calixarene-coated gold nanorods as robust photothermal agents

Authors: V. Lepeintre, Victor; F. Camerel, Franck; C. Lagrost, Corinne; G. Bruylants, Gilles; I. Jabin, Ivan

Journal: Nanoscale

Year: 2024

Citations: 0

Investigation of the photothermal properties of a large series of metal-bis(dithiolene) complexes: Impact of the molecular structure and ranking using the photothermal index IPT

Authors: J.B. Pluta, Jean Baptiste; N. Bellec, Nathalie; F. Camerel, Franck

Journal: Dyes and Pigments

Year: 2024

Citations: 1

Non-Linear Optical Activity of Chiral Bipyrimidine-Based Thin Films

Authors: P. Nicolas, Prescillia; S. Abdallah, Stéphania; A.R. Dok, Ahmet R.; H. Akdaş Kılıç, Huriye; F. Camerel, Franck

Journal: Chemistry – An Asian Journal

Year: 2024

Citations: 3

Investigation and control of metallogel formation for the deposition of supramolecular nanotubes of single-chain magnets

Authors: F.V. Houard, Félix V.; A. Olivier, Andrea; G. Cucinotta, Giuseppe; M. Mannini, M.; K. Bernot, Kevin

Journal: Journal of Materials Chemistry C

Year: 2024

Citations: 2

New Multifunctional Bipyrimidine-Based Chromophores for NLO-Active Thin-Film Preparation

Authors: U. Bora, Umut; S. Abdallah, Stéphania; R. Mhanna, Rana; F. Camerel, Franck; H. Akdaş Kılıç, Huriye

Journal: Chemistry – A European Journal

Year: 2024

Citations: 1

Improved Bipolar Properties of Ester-Functionalized Discotic Diimine–Dithiolene Complexes

Authors: F. Camerel, Franck; O. Jeannin, Olivier; C. Lagrost, Corinne

Journal: ChemPhysChem

Year: 2024

Citations: 0