Dr. Mukti Tyagi | Organic Chemistry Award | Best Researcher Award

Dr. Mukti Tyagi | Organic Chemistry Award | Best Researcher Award

Dr. Mukti Tyagi , Shriram institute for industrial research , India

Dr. Mukti Tyagi is an Assistant Scientist ‘A’ at Shriram Institute for Industrial Research, Delhi. With over 15 years of research experience, Dr. Tyagi specializes in polymer synthesis, characterization, and modification for various industrial applications. Her work has led to advancements in optical materials, including metal-containing polymers and nanocomposites, and she has contributed to projects related to optical lenses, seed coatings, and smart materials. Her expertise spans both academic research and industrial development, with notable contributions to the fields of chemistry and materials science. Dr. Tyagi has published extensively in peer-reviewed journals and has presented her work at international conferences. She has also been involved in several research projects funded by BRNS, DRDO, and other agencies. Her dedication to advancing polymer science has earned her significant recognition in the field.

Professional Profile:

Google Scholar 

Scopus 

Summary of Suitability for Award:

Dr. Mukti Tyagi’s extensive research background, impactful publications, significant patents, and contributions to high-tech industry applications make her a strong candidate for the “Best Researcher Awards.” Her innovative approach to solving complex problems in polymer science and her successful leadership in key research projects highlight her as an outstanding researcher in her field.

🎓Education:

Dr. Mukti Tyagi completed her B.Sc. in Physics, Chemistry, and Maths from Delhi University. She pursued her M.Sc. in Organic Chemistry from C.C.S.U., Meerut University followed by a Ph.D. in Applied Chemistry from Indraprastha University,  in Delhi Her academic journey laid the foundation for her expertise in polymer chemistry and materials science. During her education, Dr. Mukti Tyagi focused on the synthesis and modification of polymers, particularly for optical applications. She also developed skills in advanced research methodologies, which she later applied to her professional career. Her doctoral research contributed significantly to the understanding of polymer behavior under radiation, and she continues to build on this knowledge in her ongoing work. Through her education, Dr. Mukti Tyagi has established herself as a leading researcher in the field of polymeric materials and their industrial applications.

🏢Work Experience:

Dr. Mukti Tyagi began her career at Shriram Institute for Industrial Research in Delhi, as a Junior Research Fellow. She worked in this position for three years, during which she gained valuable experience in polymer research. Dr. Mukti Tyagi was promoted to Research Fellow, where she advanced her work on polymer synthesis and characterization. Her research led to her promotion to Assistant Scientist B and later to Assistant Scientist A , roles she continues to hold. Throughout her career, Dr. Mukti Tyagi has been involved in various projects related to optical materials, seed coatings, smart materials, and radiation processing. She has played a crucial role in the development of novel materials for industrial applications, particularly in optical plastics and nanocomposites. Dr. Mukti  Tyagi’s experience spans research, product development, and collaboration with industry leaders, making her a key figure in polymer science.

🏅Awards:

Dr. Mukti Tyagi has received numerous accolades for her contributions to polymer science and materials development. Her research on optical polymers and nanocomposites has been widely recognized in the scientific community. She was honored with awards for her innovative work on metal-containing polymers and their applications in optical materials. Dr. Tyagi’s research on dry lubrication systems and shape-memory polymers has garnered attention from key industry stakeholders. She has also received recognition for her involvement in national and international conferences, where she presented groundbreaking research in polymer chemistry and materials science. In addition to her academic recognition, Dr. Tyagi has been awarded several research grants for her work, including support from agencies such as BRNS, DRDO, and Hindustan Thompson Advertising Limited. These awards reflect her ongoing commitment to advancing the field of polymer science and her ability to translate research into practical applications in various industries.

🔬Research Focus:

Dr. Mukti Tyagi’s research focuses on the synthesis, characterization, and modification of polymers for industrial and optical applications. Her expertise includes the development of high refractive index polythiourethane, metal-containing polymers for optical lenses, and nano-dispersed polyacrylates for optical lenses. She has worked extensively on developing advanced materials for the optical industry, including foldable intraocular lenses and tinted contact lenses. Dr. Tyagi is also involved in the creation of smart compositions, such as shape-memory polymers for blast mitigation, and dry lubrication systems for nuclear applications. Her ongoing research includes the synthesis of quaternary ammonium chloride monomers for radiation grafted adsorbents. Dr. Tyagi has made significant contributions to the development of sustainable materials, including natural derivative-based seed coatings and the reduction of fat content in crude casein. Her work aims to bridge the gap between academic research and industrial needs, making her a key figure in applied chemistry and materials science.

Publication Top Notes:

  1.  Novel way of making high refractive index plastics; metal containing polymers for optical applications
    Citations: 100
  2.  Effect of gamma radiation on graphite–PTFE dry lubrication system
    Citations: 12
  3.  Studies on development of polymeric materials using gamma irradiation for contact and intraocular lenses
    Citations: 11
  4. Metal containing polymers for optical applications; part II
    Citations: 6
  5.  Novel nanocomposite optical plastics: dispersion of titanium in polyacrylates
    Citations: 5

 

Prof . Dmitry Dar’in | Organic Chemistry Award | Best Researcher Award

Prof . Dmitry Dar’in | Organic Chemistry Award | Best Researcher Award

Prof . Dmitry Dar’in  , Saint Petersburg State University, Institute of Chemistry, Russia 

Prof. Dmitry Dar’in is a distinguished chemist at the Institute of Chemistry, Saint Petersburg State University, with over 20 years of academic and research expertise. He is widely recognized for his work in heterocyclic chemistry and organic synthesis, actively supervising more than 20 graduate students. Prof. Dar’in has significantly advanced research in the synthesis of polysubstituted lactams and diazo compounds, expanding the boundaries of diazo chemistry and multicomponent reactions. With a robust publication record, including 236 Scopus-indexed articles, he has made remarkable contributions to targeted protein degradation, antitubercular agents, and trace amine-associated receptor studies. His dedication to scientific collaboration is evident in his partnerships with top international researchers, including Prof. Ewgenij Proschak, Prof. Saeed Balalaie, and Dr. Marcus D. Hartmann. He also serves as a Guest Editor for the journal Molecules on the “Diazo Chemistry” special issue. Prof. Dar’in is an influential figure in modern chemistry, continually driving innovation and education.

Professional Profile:

Scopus

Orcid

Summary of Suitability for Award:

Prof. Dmitry Dar’in is exceptionally suited for the “Best Researcher Award” due to his impactful contributions to the fields of diazo chemistry, heterocyclic compounds, and multicomponent reactions. With over 20 years of experience and an extensive portfolio of 236 Scopus-indexed publications, his work has significantly influenced organic synthesis, particularly in developing innovative methodologies for diazo compound synthesis in aqueous media and expanding the Castagnoli-Cushman reaction’s applications. His high citation index (h-index of 23) reflects the relevance and quality of his research contributions, demonstrating a consistent commitment to advancing chemical science.

🎓Education:

Prof. Dmitry Dar’in has pursued an extensive educational journey focused on chemistry, culminating in his expertise in heterocyclic compounds and organic synthesis. He completed his initial studies at a reputed university, where he laid a strong foundation in chemical theory and application. Further advancing his knowledge, Prof. Dar’in specialized in heterocyclic and diazo chemistry, undertaking advanced research projects and collaborative studies that have become foundational to his career. His formal education was complemented by ongoing research, allowing him to gain hands-on experience with complex chemical reactions and synthesis methodologies. Prof. Dar’in has continued his professional development through interactions with prominent research groups worldwide, which have enriched his teaching and research endeavors. His education paved the way for his current role as a professor and researcher, where he imparts deep knowledge in organic synthesis and continues to explore innovative approaches in chemistry.

🏢Work Experience:

With over two decades of experience in academic and applied research, Prof. Dmitry Dar’in has established himself as a leader in heterocyclic chemistry and diazo compound synthesis. He teaches advanced courses on heterocyclic chemistry and organic synthesis at Saint Petersburg State University, where he has also supervised over 20 graduate theses, guiding students in cutting-edge research methodologies. Prof. Dar’in’s experience spans multiple successful projects, including five current research endeavors and two consultancy projects for industry partners. His expertise is further reflected in his role as Guest Editor for Molecules, where he oversees specialized issues on diazo chemistry. Prof. Dar’in has extensive international collaboration experience, working closely with esteemed scientists like Prof. Ewgenij Proschak and Prof. Saeed Balalaie. His global engagements and dedication to advancing chemistry research continue to influence modern synthetic methods and applications, particularly in medicinal chemistry and targeted protein degradation.

🏅Awards:

Prof. Dmitry Dar’in has received several prestigious awards in recognition of his innovative contributions to chemistry, particularly in the areas of heterocyclic compounds and diazo chemistry. His groundbreaking work has earned him the respect of both academic and industrial circles, where his methods for synthesizing diazo compounds in aqueous environments and his contributions to the Castagnoli-Cushman reaction have been particularly celebrated. His scholarly excellence is also recognized through his editorial role for Molecules, showcasing his influence in shaping modern research directions. In addition to these honors, Prof. Dar’in has been acknowledged for his collaborative work with international research leaders, reflecting his commitment to global scientific advancement. His contributions to the field, both in education and research, have earned him nominations for top-tier awards such as the Best Researcher Award, emphasizing his stature as a leading scientist in organic synthesis and multicomponent reactions.

🔬Research Focus:

Prof. Dmitry Dar’in’s research primarily explores diazo chemistry, heterocyclic compounds, and multicomponent reactions. He has pioneered efficient synthesis methods for diazo compounds, especially diazo metanesulfonamides, and has introduced aqueous medium diazo transfer techniques, which have expanded the practical applications of these compounds. His work with polysubstituted lactams through the Castagnoli-Cushman reaction has unlocked new pathways for using cyclic anhydrides and imine-type reagents. Prof. Dar’in’s research also delves into targeted protein degradation, trace amine-associated receptors, and antitubercular agents, making substantial strides in medicinal chemistry. His innovative approaches to synthesizing five- and six-membered diazo heterocycles have opened avenues for further exploration in core functionalization and heterocyclic frameworks. Prof. Dar’in’s research remains at the forefront of organic chemistry, impacting both theoretical knowledge and practical applications in pharmaceutical sciences.

Publication Top Notes:

  • Title: Synthesis of cyclic sulfamides via one-pot alkylation/aza-Michael cascade reaction
  • Title: Coinage (Au, Ag, Cu) metal-catalyzed (3 + 2) annulation of α-aminoketones and electron-deficient alkynes as a route to 3-EWG-substituted pyrroles
    • Citations: 1
  • Title: Diazo Tetramic Acids Provide Access to Natural-Like Spirocyclic Δα,β-Butenolides through Rh(II)-Catalyzed O-H Insertion/Base-Promoted Cyclization
    • Citations: 6
  • Title: The synthesis of 1-oxa-9-azaspiro[5.5]undecane derivatives and optimization of antituberculosis activity thereof
  • Title: Phosphorescent Cyclometalated Palladium(II) and Platinum(II) Complexes Derived from Diaminocarbene Precursors

 

 

 

Evgeny Tretyakov | Organic Chemistry | Best Researcher Award

Prof Dr. Evgeny Tretyakov| Organic Chemistry | Best Researcher Award

Professor at N. D. Zelinsky Institute of Organic Chemistry, Russia

Prof. Evgeny Tretyakov is a distinguished chemist specializing in organic chemistry and molecular magnetism. Born on March 26, 1968, in Novosibirsk, Russia, he has dedicated his career to advancing the fields of organic radicals, high-spin molecules, and chemical ecology. His contributions to these areas are supported by his extensive research, numerous publications, and leadership roles in both academic and ecological initiatives.

Author Metrics

Scopus Profile

ORCID Profile

Prof. Tretyakov has achieved significant recognition in the scientific community. With a total of 3,454 citations across 1,896 documents and an h-index of 29, his research has made a considerable impact in the fields of organic chemistry and molecular magnetism. His high citation count and h-index reflect the influence and relevance of his work in these disciplines.

Education

Prof. Tretyakov’s educational background includes a Master’s Degree in Organic Chemistry from Novosibirsk State University (June 1992). He furthered his studies with a PhD from the Institute of Chemical Kinetics and Combustion, Novosibirsk, in November 1997. His academic journey continued with a Doctor of Science degree in 2009, followed by a professorship at the Institute of Organic Chemistry, Moscow, in July 2009. This solid educational foundation has been crucial in shaping his expertise and research career.

Research Focus

Prof. Tretyakov’s research focuses on organic chemistry and molecular magnetism. His work includes the synthesis of organic radicals and polyradicals, the design of high-spin organic systems, and the creation of magnetically active heterospin complexes. Additionally, he investigates the synthesis of fluorinated heterocycles and quinones. His contributions to chemical ecology include studying persistent organic pollutants and participating in international environmental programs such as the Stockholm Convention and the Arctic Contaminants Action Program.

Professional Journey

Prof. Tretyakov’s professional journey includes key positions in various prestigious institutions. He currently serves as the Deputy Director and Head of the Laboratory of Heterocyclic Compounds at the N. D. Zelinsky Institute of Organic Chemistry. His previous roles include Deputy Director at the Novosibirsk Institute of Organic Chemistry and Head of the Laboratory of Studying Nucleophilic and Radical Ion Reactions. His experience also includes visiting professorships at Max Planck Institute for Polymer Research and Osaka City University, reflecting his international collaboration and influence.

Honors & Awards

Prof. Tretyakov has been recognized with several prestigious awards and honors. These include the State Prize for Young Scientists, awards from the International Science and Education Development Foundation, and the Lavrentiev’s Award of SB RAS. He has also received accolades from the Russian Science Support Foundation and the Presidium SB RAS. These awards highlight his exceptional contributions to scientific research and his leadership in advancing his field.

Publications Noted & Contributions

Prof. Tretyakov has authored and co-authored over 250 scientific publications. Some notable works include studies on the role of paramagnetic ligands in magneto-structural anomalies, light-induced magnetostructural anomalies, and photoswitching in molecular magnets. His research has been published in leading journals such as Inorganic Chemistry, Journal of the American Chemical Society, and Angewandte Chemie, showcasing his significant contributions to the scientific literature.

Synthesis and Photoinduced Behavior of DPP-Anchored Nitronyl Nitroxides: A Multifaceted Approach

  • Journal: RSC Advances
  • Publication Date: 2024
  • DOI: 10.1039/D4RA00916A
  • Contributors: Evgeny Tretyakov, Dmitry Gorbunov, Nina Gritsan, Ashok Keerthi, Martin Baumgarten, Dieter Schollmeyer, Mikhail Ivanov, Anna Sergeeva, Matvey Fedin
  • Summary: This paper explores the synthesis and photoinduced behavior of diphenylphosphine (DPP)-anchored nitronyl nitroxides. The study presents a multifaceted approach to understanding how these compounds behave under light exposure, revealing insights into their photochemical properties and potential applications.

Polyfluorophenyl-Substituted Blatter Radicals: Synthesis and Structure–Property Correlations

  • Journal: Crystal Growth & Design
  • Publication Date: July 3, 2024
  • DOI: 10.1021/acs.cgd.4c00537
  • Contributors: Dmitry Gulyaev, Andrey Serykh, Dmitry Gorbunov, Nina Gritsan, Anna Akyeva, Mikhail Syroeshkin, Galina Romanenko, Evgeny Tretyakov
  • Summary: This article focuses on the synthesis of polyfluorophenyl-substituted Blatter radicals and examines the structure–property relationships of these compounds. The study provides detailed correlations between the molecular structure of the radicals and their physical properties, contributing to the understanding of their behavior and potential uses.

Halogen Bonding as a Supramolecular Modulator of Crystal Packing and Exchange Interactions in Nitronyl Nitroxides

  • Journal: Crystal Growth & Design
  • Publication Date: March 6, 2024
  • DOI: 10.1021/acs.cgd.3c01442
  • Contributors: Pavel V. Petunin, Evgeny V. Tretyakov, Matvey K. Shurikov, Daria E. Votkina, Galina V. Romanenko, Alexey A. Dmitriev, Nina P. Gritsan, Daniil M. Ivanov, Rosa M. Gomila, Antonio Frontera et al.
  • Summary: This research investigates how halogen bonding can modulate crystal packing and exchange interactions in nitronyl nitroxides. The study highlights the role of halogen bonds in influencing the supramolecular organization and magnetic properties of these materials, offering new perspectives on their structural and functional modulation.

A Nitronyl Nitroxide‐Substituted Benzotriazinyl Tetraradical**

  • Journal: Chemistry – A European Journal
  • Publication Date: February 7, 2024
  • DOI: 10.1002/chem.202303456
  • Contributors: Evgeny V. Tretyakov, Igor A. Zayakin, Alexey A. Dmitriev, Matvey V. Fedin, Galina V. Romanenko, Artem S. Bogomyakov, Anna Ya. Akyeva, Mikhail A. Syroeshkin, Naoki Yoshioka, Nina P. Gritsan
  • Summary: This paper reports on the synthesis and properties of a tetraradical compound featuring a nitronyl nitroxide-substituted benzotriazinyl core. The study discusses the electronic structure, magnetic properties, and potential applications of this novel tetraradical, providing insights into its unique behavior and characteristics.

Self-Assembly of Iodoacetylenyl-Substituted Nitronyl Nitroxides via Halogen Bonding

  • Journal: CrystEngComm
  • Publication Date: 2023
  • DOI: 10.1039/D3CE00735A
  • Contributors: Matvey K. Shurikov, Evgeny V. Tretyakov, Pavel V. Petunin, Darya E. Votkina, Galina V. Romanenko, Artem S. Bogomyakov, Sergi Burguera, Antonio Frontera, Vadim Yu. Kukushkin, Pavel S. Postnikov
  • Summary: This article explores the self-assembly of iodoacetylenyl-substituted nitronyl nitroxides through halogen bonding. It presents a detailed analysis of how these interactions influence the formation and organization of molecular assemblies, shedding light on the role of halogen bonding in supramolecular chemistry.

Research Timeline

Prof. Tretyakov’s research timeline spans several decades, with significant contributions starting from his early work in the Institute of Chemical Kinetics and Combustion to his current roles at the N. D. Zelinsky Institute of Organic Chemistry. His research projects have been supported by various grants and fellowships, including those from the Russian Foundation for Basic Research and the Centre National de la Recherche Scientifique. His ongoing research projects focus on areas such as molecular magnets and graphene nanostructures.

Collaborations and Projects

Throughout his career, Prof. Tretyakov has collaborated with leading scientists and institutions worldwide. His projects include the development of switchable molecular magnets, spin-labeled derivatives, and functionalized graphene nanostructures. These projects are supported by various international and national funding bodies, reflecting his strong network and collaborative approach in advancing chemical research.

Strengths of the Best Researcher Award

High Citation Impact: Prof. Tretyakov’s impressive citation metrics (3,454 citations and an h-index of 29) highlight the significant influence and broad recognition of his work in organic chemistry and molecular magnetism.

Diverse Research Focus: His research spans multiple important areas including organic radicals, high-spin molecules, chemical ecology, and molecular magnetism. This diversity showcases his ability to address complex scientific challenges from various perspectives.

Prestigious Publications: Prof. Tretyakov has published extensively in high-impact journals like Inorganic Chemistry, Journal of the American Chemical Society, and Angewandte Chemie. His work on topics such as photoinduced behavior and halogen bonding underscores his contributions to advancing knowledge in his fields.

International Collaboration: His collaborations with esteemed institutions and scientists worldwide (e.g., Max Planck Institute, Osaka City University) reflect his global recognition and the international relevance of his research.

Significant Awards and Honors: The recognition Prof. Tretyakov has received, including the State Prize for Young Scientists and the Lavrentiev’s Award, highlights his outstanding contributions and leadership in scientific research and ecological initiatives.

Areas for Improvement

Broadened Outreach: Although Prof. Tretyakov has made significant contributions to scientific research, increasing outreach through public engagement and science communication could further enhance the visibility and impact of his work outside academic circles.

Interdisciplinary Integration: While his work is diverse, there could be further opportunities to integrate findings from his research on chemical ecology with his studies in molecular magnetism, potentially leading to novel interdisciplinary applications.

Expanded Research Funding: Diversifying the sources and types of funding for his research could provide additional resources and support for exploring new and innovative areas within his field.

Increased Focus on Emerging Trends: Staying ahead of emerging trends in organic chemistry and molecular magnetism, such as advancements in computational methods or new materials, could help maintain his research’s cutting-edge status.

Mentorship and Training: Enhancing efforts in mentoring young scientists and fostering new talent in the field could ensure the continued growth and evolution of research in his areas of expertise.

Conclusion

Prof. Evgeny Tretyakov’s receipt of the Best Researcher Award is a testament to his exceptional contributions to organic chemistry and molecular magnetism. His extensive research, significant publication record, high citation impact, and international collaborations underscore his prominent role in advancing scientific knowledge. While there are areas for potential improvement, such as increasing public outreach and integrating interdisciplinary approaches, his achievements reflect a highly impactful and influential career. Continued focus on emerging trends and mentorship will further enhance his contributions and sustain his position at the forefront of scientific research.