Iran Sheikhshoaie | Nanotechnology | Women Researcher Award

Prof. Iran Sheikhshoaie| Nanotechnology
| Women Researcher Award

Academic Researcher | Shahid Bahonar University of Kerman | Iran

Prof. Iran Sheikhshoaie is a distinguished scholar in inorganic chemistry with a career dedicated to teaching, research, and innovation. She has significantly contributed to the fields of coordination chemistry, bioinorganic systems, nanomaterials, and electrochemistry, establishing herself as a leader in both theoretical and experimental chemistry. Her academic journey began with a strong foundation in chemistry, progressing to advanced studies and culminating in a Ph.D. in inorganic chemistry. As a professor at Shahid Bahonar University of Kerman, she has guided countless students, inspiring the next generation of scientists. Through her pioneering work on Schiff-base ligands, ion-selective sensors, and photocatalysts, she continues to expand the frontiers of analytical and inorganic chemistry with a balance of depth and innovation.

Professional Profile

Google Scholar | Scopus

Education

Prof. Iran Sheikhshoaie began her academic journey in chemistry with a Bachelor’s degree, followed by advanced postgraduate studies in inorganic chemistry. Her academic training provided her with a strong foundation in both theoretical and applied aspects of the field. She completed a Master’s degree with specialization in inorganic chemistry, where she cultivated expertise in chemical structures, bonding, and reactivity. Building upon this foundation, she pursued doctoral studies, focusing on inorganic chemistry with a particular emphasis on Schiff-base ligands, coordination complexes, and their electronic properties. Her education reflects a well-rounded preparation, combining traditional chemistry with modern computational and experimental approaches. This strong academic background has been instrumental in shaping her career as an accomplished professor and researcher.

Professional Experience

Prof. Iran Sheikhshoaie has built an extensive academic career as a professor of chemistry at Shahid Bahonar University of Kerman, where she teaches and mentors students across undergraduate and postgraduate levels. She has held progressive faculty positions, advancing through assistant, associate, and full professorship, reflecting her contributions to teaching, research, and service. Her teaching portfolio includes general chemistry, inorganic chemistry, symmetry and group theory, organometallic chemistry, and advanced laboratory courses, offering students both theoretical depth and practical skill. Beyond teaching, she has actively led research projects in coordination chemistry, nanochemistry, bioinorganic chemistry, and electrochemistry. Her academic career demonstrates a blend of pedagogy, leadership, and innovation, making her a respected figure within her institution and the wider chemistry community.

Awards 

Prof. Iran Sheikhshoaie has been recognized for her impactful work in chemistry through numerous acknowledgments of her teaching and research contributions. She has achieved distinction within her academic community for her dedication to advancing inorganic chemistry and interdisciplinary studies. Her leadership in the development of novel ligands, ion-selective sensors, and nanostructured materials has earned her respect as both a teacher and researcher. She has received honors for her mentorship of students and her efforts to expand scientific knowledge through collaborative and independent projects. Her reputation is strengthened by a strong publication record in international journals, which has positioned her research as influential within the fields of coordination chemistry and bioinorganic chemistry. These recognitions highlight her academic excellence and professional impact.

Research Interests 

Prof. Iran Sheikhshoaie research integrates coordination chemistry, nanochemistry, and bioinorganic chemistry with practical and theoretical approaches. Her focus includes designing Schiff-base ligands and exploring their electronic structures, nonlinear optical properties, and coordination behavior with transition metals. She also develops ion-selective electrodes, polymeric membrane sensors, and nanostructured compounds for applications in analytical and electrochemistry. In addition, her work on photocatalysts contributes to green chemistry and environmental applications, while her studies in bioinorganic systems explore the interface of chemistry and biology. By combining synthesis, characterization, and computational modeling, she creates a holistic understanding of chemical systems. Her interdisciplinary research not only advances fundamental science but also provides innovative solutions to industrial, environmental, and biomedical challenges.

Publication Top Notes

A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode ..

Year: 2019, Cited by: 285

Performance of metal–organic frameworks in the electrochemical sensing of environmental pollutants .

Year: 2021, Cited by: 230

Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum  complex-carbon nanotube paste electrode .

Year: 2011, Cited by: 168

A novel tridentate Schiff base dioxo-molybdenum  complex: Synthesis, crystal structure and catalytic performance in green oxidation of sulfides by urea hydrogen peroxide .

Year: 2009, Cited by: 163

Magnetic nanomaterials based electrochemical (bio) sensors for food analysis .

Year: 2021, Cited by: 159

Solid phase extraction of copper  by sorption on octadecyl silica membrane disk modified with a new Schiff base and determination with atomic absorption spectrometry .

Year: 2008, Cited by: 152

Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode .

Year: 2011, Cited by: 149

Amplified electrochemical sensor employing screen-printed electrode modified with Ni-ZIF-67 nanocomposite for high sensitive analysis of Sudan I in present bisphenol A .

Year: 2022, Cited by: 134

Conclusion 

Prof. Iran Sheikhshoaie stands out as an exemplary researcher whose academic depth, innovation in inorganic and nanochemistry, and long-standing contributions to electrochemical sensor design make her highly deserving of the Women Researcher Award. Her blend of theoretical and experimental expertise has advanced scientific understanding in diverse fields while her teaching and mentoring continue to inspire the next generation of chemists. With expanded global outreach and greater emphasis on applied innovation, her already strong impact could become transformative. Overall, she exemplifies the qualities of an accomplished woman scientist contributing meaningfully to both science and society.

Dr. Abdul Abdul | Nanotechnology | Best Researcher Award

Dr. Abdul Abdul | Nanotechnology | Best Researcher Award

Dr. Abdul Abdul , Nanotechnology , Associate Prof at Quanzhou University of Information Engineering, China

Dr. M. Abdul is an experimental physicist specializing in quantum many-body systems using ultracold atoms and quantum gases. He earned his Ph.D. from the University of Science and Technology of China, focusing on Boson Sampling schemes in optical lattices. Dr. Abdul has worked as an Assistant Professor at Sichuan University and is currently a full-time researcher at the University of Electronic Science and Technology of China. His research spans quantum optics, nonlinear optics, ultracold quantum gases, and high-resolution imaging. Dr. Abdul is highly skilled in developing ultrahigh vacuum systems, homemade lasers, and advanced imaging setups. With a resilient, positive, and hardworking personality, he has contributed to multiple research projects, applied for two patents, and published extensively in top journals. Fluent in English and beginner-level Chinese, Dr. Abdul embodies a cooperative spirit in scientific innovation and collaboration.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. M. Abdul is a dynamic and accomplished experimental physicist with a strong academic and research background in quantum optics, ultracold atomic systems, quantum simulation, and nonlinear optics. His research interests lie at the cutting edge of modern quantum physics, particularly in Boson sampling, high-resolution optical lattices, and superlattice-based quantum simulations. His career reflects a consistent and impactful contribution to both theoretical modeling and experimental implementation in advanced photonics and quantum technologies. Dr. M. Abdul is a highly deserving candidate for the “Best Researcher Award”. His research profile is marked by academic rigor, technical innovation, and interdisciplinary reach. With an impressive record of publications, international collaborations, and pioneering work in quantum systems and optics, he stands out as a leader among early- to mid-career researchers. His contributions not only advance fundamental science but also open new avenues for applications in quantum technologies and material science.

🎓Education:

Dr. M. Abdul pursued his Ph.D. in Physics at the University of Science and Technology of China (2014–2018), focusing on Boson Sampling with ultracold atoms. He completed his M.Phil. in Electronics from Quaid-I-Azam University Islamabad (2009–2011), achieving top national ranking, and earned an M.Sc. in Physics specializing in Electronics from Bahauddin Zakariya University, Multan (2006–2008). His undergraduate B.Sc. degree in Physics and Mathematics was also obtained from Bahauddin Zakariya University (2003–2006). Currently, he is serving as a full-time researcher at the University of Electronic Science and Technology of China (2022–2025). His academic journey reflects a consistent focus on quantum physics, electronic systems, and ultracold atomic research. He has also undertaken specialized training in laser systems, optical lattices, and computational physics tools, equipping him with deep experimental and theoretical proficiencies in modern quantum technologies.

🏢Work Experience:

Dr. M. Abdul has held several prestigious academic and teaching positions. From December 2018 to March 2022, he served as an Assistant Professor at Sichuan University, College of Physics, where he worked on optical lattices and ultracold atoms. Since May 2022, he has been a full-time researcher at the University of Electronic Science and Technology of China. Earlier in his career, he taught Physics and Mathematics at Down High School, Punjab Group of Colleges, and St. Mary College in Rawalpindi, developing a strong foundation in educational leadership and student mentorship. He also contributed to various national-level research projects in Pakistan, including studies on nonlinear atomic dynamics and nano-devices. His diverse professional experience combines experimental physics research, teaching, and development of advanced laboratory setups like vacuum systems, lasers, and imaging systems, establishing him as a multifaceted expert in quantum technologies.

🏅Awards: 

Dr. M. Abdul has achieved significant recognition throughout his academic career. He secured the first rank in his M.Phil. program at Quaid-I-Azam University, Islamabad. During his Ph.D. tenure, he contributed to several funded national and international research projects, such as those supported by the National Higher Education Commission of Pakistan and the National Science Foundation of China (NSFC). He has applied for two patents related to laser and optical technologies. His research presentations at major international conferences, including QCMC 2014 (China) and CHAOS2018, reflect his growing influence in quantum physics and nonlinear dynamics communities. Invitations to submit in top-tier journals such as Applied Physics Reviews and contributions to organizing international conferences on nanoscience further mark his career. His awards and project leadership roles highlight his excellence, innovation, and dedication to advancing the field of quantum optics and ultracold atom systems.

🔬Research Focus:

Dr. M. Abdul’s research primarily centers on quantum simulation, quantum optics, ultracold quantum gases, and many-body quantum systems. His doctoral work explored Boson Sampling schemes using ultracold atoms in optical lattices. He has since expanded his expertise into high-resolution imaging using superlattices and nonlinear optics with a focus on cavity-based laser systems. His work involves developing ultrahigh vacuum systems, laser stabilization circuits, and DMD-based imaging technologies. He is also engaged in first-principles studies of optical, electronic, and thermoelectric properties of novel perovskite materials. Dr. Abdul’s projects aim to realize quantum metamaterials and quantum memory devices, critical for future quantum technologies. His current focus includes creating spatially entangled bosonic systems, manipulating surface plasmon polaritons, and engineering ultracold atoms for Hong-Ou-Mandel interference experiments. His interdisciplinary approach bridges theoretical modeling with advanced experimental setups, contributing to the next-generation quantum simulation platforms.

Publication Top Notes:

1. Synergistic Improvement of OER/HER Electrocatalytic Performance of Cu₂Te via the Introduction of Zr for Water Electrolysis

2. Facile Synthesis of Co₃Te₄–Fe₃C for Efficient Overall Water-Splitting in an Alkaline Medium

3. Manipulation of Surface Plasmon Polariton Fields Excitation at Quantum-Size Slit in a Dielectric and Graphene Interface

4. Exploring the Properties of Zr₂CO₂/GaS van der Waals Heterostructures for Optoelectronic Applications

5. Effects of Thermal Fluctuation When an Optical Cavity Possesses Neutral Atoms and a Two-Mode Laser System

6. Synchronized Attractors and Phase Entrained with Cavity Loss of the Coupled Laser’s Map