Dr. Shoaib Nazir | Nanotechnology | Excellence in Research

Dr. Shoaib Nazir | Nanotechnology | Excellence in Research

Dr. Shoaib Nazir , Nanotechnology , Postdoctoral Researcher at Shenzhen University, China

🎓 Shoaib Nazir is a passionate physicist and materials researcher from Pakistan, currently pursuing his Ph.D. at Shaanxi Normal University, Xi’an, China. With expertise in nanomaterials synthesis and characterization, Shoaib’s academic journey reflects a strong dedication to cutting-edge research in materials science. Before moving to China, he earned his M.Phil. in Physics from Riphah International University and a BS (Hons.) from COMSATS, Lahore. Beyond his academic pursuits, he has significantly contributed to education as a senior lecturer and department head in multiple institutions across Pakistan, shaping future scientists with enthusiasm and leadership. His research primarily focuses on nanotechnology, magnetic materials, and materials for electronics and photonics, resulting in several reputable publications. Shoaib is actively engaged on academic platforms like ResearchGate and Google Scholar and stays connected globally via social media and professional networks. His multilingual abilities and cultural adaptability further enrich his academic and professional endeavors.

Professional Profile : 

Google Scholar 

Summary of Suitability for Award:

Shoaib Nazir demonstrates strong potential for recognition under an “Excellence in Research” award. He has built a focused research profile in nanomaterials and material sciences, publishing multiple papers in reputable journals such as Ceramics International and the Arabian Journal of Chemistry. His Ph.D. research in synthesizing and characterizing pure and doped nanomaterials aligns well with high-impact, cutting-edge fields relevant to electronics, photonics, and magnetic applications, contributing valuable insights to advanced material development. His ability to handle complex experimental techniques and multidisciplinary topics like structural, optical, and magnetic characterization underlines his technical proficiency and research depth. Moreover, his proactive academic engagement, including international study and multilingual skills, signifies adaptability and global research vision. Shoaib Nazir is a suitable candidate for an “Excellence in Research” award, particularly in the early-career researcher or emerging scientist categories. His specialized expertise in nanomaterials synthesis and characterization, coupled with quality publications and an international academic background, demonstrates clear merit and potential for significant contributions to materials science and physics. With further research output and collaborations, Shoaib is well-positioned to achieve even greater recognition in his field.

🎓Education:

Shoaib Nazir embarked on his academic journey in physics with a BS (Hons.) degree from COMSATS Institute of Information & Technology Lahore, Pakistan (2011–2015), where he completed a final-year report on space weather events and Earth’s magnetosphere. He then pursued his Master’s (M.Phil.) in Physics at Riphah International University, Islamabad, Pakistan (2015–2017), focusing his dissertation on the synthesis and characterization of hexaferrites. Passionate about expanding his horizons, Shoaib moved to China for his Ph.D. in Physics (2020–2024) at Shaanxi Normal University, Xi’an, where he specializes in synthesizing and characterizing pure and doped nanomaterials. In addition, he studied the Chinese language (HSK 4) from 2019–2020 to facilitate his integration into the academic environment in China. His educational path reflects a strong foundation in physics and a keen focus on materials science, enabling him to bridge theoretical insights with practical applications in nanotechnology.

🏢Work Experience:

Shoaib Nazir boasts diverse professional experience as an educator and academic leader. He served from 2017 to 2022 as the Head of the Physics Department and Senior Lecturer at Punjab Group of Colleges, P.D. Khan Campus, Jhelum, where he led curriculum planning, teaching, and extracurricular initiatives. Prior to that, he worked at Government Degree College CSS, Chakwal (2016–2017), as a Senior Lecturer and Head of the Science Committee, overseeing both academic and student engagement activities. From 2015 to 2016, he was a Physics Lecturer at Govt. Albiruni Degree College, P.D. Khan, Jhelum, where he handled teaching and administrative responsibilities. Earlier in his career, he taught physics and mathematics at The Cambridge Group of Education, Lahore (2013–2015), as a Senior Science Teacher. Throughout his teaching journey, Shoaib has honed his skills in delivering complex scientific concepts with clarity, fostering curiosity and academic excellence among his students.

🏅Awards: 

While specific formal awards are not listed in Shoaib Nazir’s CV, his career reflects significant achievements and honors through his progressive roles and academic contributions. Serving as Head of Department and Senior Lecturer in multiple prestigious colleges in Pakistan highlights his professional recognition and trust as a leader and educator. His successful admission and ongoing pursuit of a Ph.D. in Physics at a respected Chinese university underscore his academic excellence and competitiveness on the international stage. Additionally, his ability to publish in high-impact journals like Ceramics International and Arabian Journal of Chemistry demonstrates scholarly merit. Shoaib’s active engagement in extracurricular activities and leadership roles throughout his career points to his multifaceted contributions and the respect he commands in academic circles. His linguistic achievement in completing HSK 4 in Chinese further indicates his dedication and adaptability, positioning him as an accomplished scholar and educator with global aspirations.

🔬Research Focus:

Shoaib Nazir’s research lies at the fascinating intersection of nanotechnology and materials science, focusing on synthesizing and characterizing advanced materials for electronics and photonics. His interests encompass the development of nanoparticles, magnetic materials such as ferrites, and materials tailored for electronic device applications. He delves into studying structural, magnetic, optical, and electrical properties of both pure and doped nanomaterials to explore potential technological applications. By doping materials like ZnO nanoparticles with transition metals, Shoaib investigates ways to enhance material performance for electronic devices. His work contributes to understanding magneto-optical phenomena, crucial for photonic and magnetic storage technologies. His Ph.D. research centers on pure and doped nanomaterials synthesis, a field poised to revolutionize next-generation electronic components, sensors, and energy applications. With publications in respected journals, Shoaib’s research aims to bridge the gap between fundamental physics and practical innovations, driving advancements in nanotechnology and modern material engineering.

Publication Top Notes:

1. Modification in structural, optical, morphological, and electrical properties of zinc oxide (ZnO) nanoparticles (NPs) by metal (Ni, Co) dopants for electronic device applications
Citations: 104

2. Structural, magnetic, and electrical evaluations of rare earth Gd3+ doped in mixed Co–Mn spinel ferrite nanoparticles
Citations: 57

3.Magneto-optical properties and physical characteristics of M-type hexagonal ferrite (Ba₁₋ₓCaₓFe₁₁.₄Al₀.₆O₁₉) nanoparticles (NPs)
Citations: 46

4.Green synthesis of AgNPs from leaves extract of Saliva Sclarea, their characterization, antibacterial activity, and catalytic reduction ability
Citations: 45

5.Metal-based nanoparticles: basics, types, fabrications and their electronic applications
Citations: 43

6. Techno-economic and environmental perspectives of solar cell technologies: a comprehensive review
Citations: 30

7.Modification of physicochemical and electrical characteristics of lead sulfide (PbS) nanoparticles (NPs) by manganese (Mn) doping for electronic device and applications
Citations: 13

8. A comparative study of structural, vibrational mode, optical and electrical properties of pure nickel selenide (NiSe) and Ce-doped NiSe nanoparticles for electronic device applications
Citations: 13

9. Improvements in the physicochemical and electrical characteristics of BaO nanoparticles by Cu doping for electronic device applications
Citations: 12

10. Synthesis and characterization of Fe-substituting BaO nanoparticles by sol-gel method
Citations: 11

 

Anindita Dey | Nanotechnology | Best Researcher Award

Dr. Anindita Dey | Nanotechnology | Best Researcher Award

Doctorate at Asutosh College, India

Dr. Anindita Dey (nĂŠe Mondal) is a distinguished academic and researcher in Botany, specializing in biophysics and the study of nanoparticles’ effects on plant systems. With over a decade of experience, she has contributed significantly to understanding how engineered nanoparticles can enhance agricultural practices and energy conversion. Currently serving as an Assistant Professor at Asutosh College in Kolkata, Dr. Dey is known for her commitment to both teaching and research, making her a respected figure in her field.

Author Metrics

Google Scholar Profile

Dr. Dey has an impressive publication record with 27 research papers, highlighting her contributions to biophysics and nanotechnology. Her work has gained considerable recognition, reflected in her citation metrics, showcasing her influence in the scientific community. Additionally, she holds two patents related to her research, emphasizing her focus on practical applications and innovative solutions in agriculture and energy.

Education

Dr. Dey’s educational path is marked by academic excellence, beginning with her B.Sc. and M.Sc. degrees in Botany from The University of Burdwan, where she specialized in biochemistry. She earned her Ph.D. in Biophysics from Jadavpur University in 2013, focusing on the interaction between nanoparticles and plant growth regulation. This strong academic foundation has equipped her with the knowledge and skills necessary for her research career.

Research Focus

Dr. Dey’s research primarily investigates the impact of nanoparticles on plant growth and metabolic processes. She explores the potential of these nanoparticles as nano-fertilizers and their role in enhancing crop yield and sustainability. Additionally, her studies examine how nanoparticles interact with plant regulatory proteins and their environmental implications, contributing valuable insights to the field of nanobiotechnology.

Professional Journey

Dr. Dey began her career as a Junior Research Fellow at Jadavpur University, where she conducted interdisciplinary research on energy conversion systems. She later advanced to Senior Research Fellow positions, focusing on the effects of nanoparticles on plant systems. Since 2013, she has served as an Assistant Professor at Asutosh College, balancing her teaching responsibilities with ongoing research endeavors in her specialized field.

Honors & Awards

Throughout her career, Dr. Dey has received numerous accolades for her innovative research. She has been awarded patents for her findings, particularly related to the agricultural applications of nanotechnology. Her contributions have been recognized at various conferences, where she has presented her work and received commendations for her impactful research aimed at sustainable agricultural practices.

Publications Noted & Contributions

Dr. Dey’s publication record includes significant papers in high-impact journals, focusing on the effects of nanoparticles on plant growth and energy conversion. Her notable contributions cover studies on the phytotoxicity of nano materials, the benefits of carbon nanotubes in agriculture, and advancements in solar energy conversion technologies. These publications not only advance scientific knowledge but also promote the development of sustainable practices in agriculture.

Guar gum micro-vehicle mediated delivery strategy and synergistic activity of thymoquinone and piperine: An in vitro study on bacterial and hepatocellular carcinoma cells
Authors: S. Das, D. Bera, K. Pal, D. Mondal, P. Karmakar, S. Das, A. Dey
Journal: Journal of Drug Delivery Science and Technology
Year: 2020
Summary: This study investigates a novel delivery strategy using guar gum micro-vehicles for thymoquinone and piperine, demonstrating their synergistic effects on bacterial and cancer cells.

Increased quantum efficiency in hybrid photoelectrochemical cell consisting of thionine and zinc oxide nanoparticles
Authors: A. Mondal, R. Basu, S. Das, P. Nandy
Journal: Journal of Photochemistry and Photobiology A: Chemistry
Year: 2010
Summary: This research focuses on enhancing the quantum efficiency of hybrid photoelectrochemical cells by integrating thionine with zinc oxide nanoparticles, contributing to advancements in energy conversion technologies.

Enhanced antibacterial activity of a novel biocompatible triarylmethane based ionic liquid-graphene oxide nanocomposite
Authors: S. Prusty, K. Pal, D. Bera, A. Paul, M. Mukherjee, F. Khan, A. Dey, S. Das
Journal: Colloids and Surfaces B: Biointerfaces
Year: 2021
Summary: This article discusses the antibacterial properties of a new ionic liquid-graphene oxide composite, highlighting its biocompatibility and potential applications in medical and environmental fields.

Dual release kinetics in a single dosage from core–shell hydrogel scaffolds
Authors: F. Khan, D. Bera, S. Palchaudhuri, R. Bera, M. Mukhopadhyay, A. Dey, …
Journal: RSC Advances
Year: 2018
Summary: This study explores the dual release mechanisms of drugs from core-shell hydrogel scaffolds, emphasizing their potential for controlled drug delivery applications.

Heat induced voltage generation in electrochemical cell containing zinc oxide nanoparticles
Authors: A. Mondal, R. Basu, S. Das, P. Nandy
Journal: Energy
Year: 2010
Summary: The research examines the voltage generation capabilities of electrochemical cells that utilize zinc oxide nanoparticles under heat, contributing to the understanding of energy conversion processes.

A study on the phytotoxicity of nano mullite and metal-amended nano mullite on mung bean plants
Authors: A. Dey, B. Bagchi, S. Das, R. Basu, P. Nandy
Journal: Journal of Environmental Monitoring
Year: 2011
Summary: This paper investigates the phytotoxic effects of nano mullite and its metal amendments on mung bean plants, providing insights into the environmental impact of nanoparticles in agriculture.

Research Timeline

Dr. Dey’s research journey began as a Junior Research Fellow at Jadavpur University from 2008 to 2010, focusing on energy conversion using bio-mimetic systems. She continued as a Senior Research Fellow under the Department of Science & Technology from 2010 to 2011, studying nanoparticles’ effects on plants. From 2011 to 2013, she was a Senior Research Fellow at CSIR, furthering her research on energy conversion and plant growth regulation. Since 2013, she has been an Assistant Professor at Asutosh College, actively engaged in teaching and research projects.

Conclusion

Dr. Anindita Dey’s career embodies a strong dedication to advancing research in Botany and biophysics, particularly through her studies on nanoparticles. Her educational background, professional achievements, and extensive publications illustrate her commitment to scientific exploration and innovation. As she continues her work, Dr. Dey aims to enhance understanding of sustainable agricultural practices and the applications of nanotechnology in biological systems.