Assoc. Prof. Dr .Wanisa Abdussalam-Mohammed | Nanobiotechnology | Best Paper Award

Assoc. Prof. Dr. Wanisa Abdussalam-Mohammed | Nanobiotechnology | Best Paper Award

Assoc. Prof. Dr. Wanisa Abdussalam – Mohammed| Nanobiotechnology | Tripoli University | Libya

Dr. Wanisa Abdussalam-Mohammed is an Associate Professor in the Department of Chemical Engineering at the University of Tripoli, Libya. She holds a Ph.D. in Bio-Nanotechnology from Swansea University, UK, specializing in engineered metal nanodevices for biomedical applications. Her academic journey began with a Bachelor’s and Master’s in Organic Chemistry from Sebha University, Libya. With over two decades of experience in academia, she has served as a Lecturer, Assistant Professor, and Postdoctoral Researcher in institutions across Libya and the UK. She has been an active contributor to international conferences, serving as the President of the Scientific Committee for the First International Conference on Nano Science and Nano Technology (2023) and a committee member for the Sixth International Conference on Science and Technology. Her research interests lie in nanomedicine, organic synthesis, and biomedical applications of nanoparticles. She has guided numerous students and published extensively in high-impact journals.

Professional Profile :

Google Scholar

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Wanisa Abdussalam-Mohammed is a distinguished researcher in the field of bio-nanotechnology and chemical engineering, with significant contributions to nanomedicine, organic synthesis, and biomedical applications. Her research involves the development of engineered metal nanodevices for therapeutic and biomedical use, making it highly impactful in medicine, pharmaceuticals, and materials science. Her Ph.D. work at Swansea University (UK) focused on novel nanomaterials, and she has attended multiple advanced courses in nanotechnology, toxicology, and biomedical applications. Based on her extensive research experience, international collaborations, and expertise in nanotechnology, Dr. Wanisa Abdussalam-Mohammed appears to be a strong candidate for the “Best Paper Award”. If the paper under consideration includes her work on engineered nanodevices for biomedical applications, toxicology of nanoparticles, or advancements in nanomedicine, it would likely be a compelling contender due to its scientific significance, practical applications, and novelty in the field.

🎓Education:

Dr. Wanisa Abdussalam-Mohammed holds a Ph.D. in Bio-nanotechnology from Swansea University, UK (2017), where she specialized in engineered metal nanodevices for therapeutic and biomedical applications. She earned her Master’s degree in Organic Chemistry from Sebha University, Libya (2005), focusing on the synthesis of heterocyclic compounds and bioactive ligands. She completed her Bachelor’s degree in Chemistry from the same university in 1998. Throughout her academic journey, Dr. Wanisa pursued numerous professional training programs, including advanced courses in nanotechnology, nanomedicine, and spectroscopy techniques. She also completed intensive English language training at institutions in Libya and the UK. Additionally, she undertook specialized technical training in Dynamic Light Scattering (DLS), ATR-FTIR, mass spectrometry, and nuclear magnetic resonance (NMR) at Swansea and Bristol Universities. Her strong academic foundation and interdisciplinary expertise in chemistry, nanotechnology, and biomedical sciences have contributed to her impactful research and teaching career.

🏢Work Experience:

Dr. Wanisa Abdussalam-Mohammed has over two decades of experience in teaching, research, and laboratory supervision. She began her career as a Teaching Assistant at Sebha University (1999-2005), where she also collaborated in a medical laboratory. She later became a Lecturer at Sebha University (2006-2012), teaching organic chemistry and supervising research projects. She worked as a Laboratory Demonstrator at Swansea University, UK (2014-2017), training undergraduate and MSc students in nanotechnology research. In 2018, she completed a Postdoctoral Fellowship in Chemistry at Swansea University, working with Prof. Owen Guy. She served as an Assistant Professor at Sebha University (2019-2023) and collaborated with Tripoli University in Chemical Engineering before securing a permanent faculty position at the University of Tripoli in 2023, where she became an Associate Professor in September 2023. She has also been actively involved in scientific conferences and postgraduate research coordination.

🏅Awards: 

Dr. Wanisa Abdussalam-Mohammed has received multiple recognitions for her academic excellence and research contributions. In 2023, she was appointed President of the Scientific Committee for the First International Conference on Nano Science and Nano Technology, highlighting her leadership in advancing nanotechnology research. She was also a Member of the Scientific Committee for the Sixth International Conference on Science and Technology (2023). Throughout her academic career, she has been awarded prestigious research fellowships and has contributed to high-impact research in nanomedicine and chemical engineering. Additionally, she has received recognition for her contributions to postgraduate education as a Postgraduate Coordinator at Sebha University (2021-2022). Her expertise in bio-nanotechnology, spectroscopy, and advanced materials has earned her international collaborations and invitations to prestigious scientific events. These achievements underscore her commitment to scientific innovation, education, and leadership in the field of nanotechnology and chemical sciences.

🔬Research Focus:

Dr. Wanisa Abdussalam-Mohammed’s research focuses on bio-nanotechnology, nanomedicine, and chemical engineering, with a specialization in engineered metal nanodevices for biomedical applications. Her Ph.D. research at Swansea University, UK, explored novel nanomaterials for therapeutic use, bridging nanotechnology and biomedical sciences. She has extensive expertise in organic synthesis, heterocyclic compounds, bioactive ligands, and nanoparticle-based drug delivery systems. Additionally, she investigates nanoparticle toxicity, safety assessments, and their applications in medicine, environmental science, and chemical industries. She has conducted advanced spectroscopic studies using ATR-FTIR, UV-Vis, Dynamic Light Scattering (DLS), and Mass Spectrometry, contributing to a deeper understanding of nanomaterials and their interactions with biological systems. Her research also extends to nanotechnology-based sensors, catalysis, and sustainable chemical processes. Through her interdisciplinary work, Dr. Wanisa aims to develop innovative nanomaterials with real-world applications in healthcare, diagnostics, and industrial chemistry.

Publication Top Notes:

Green chemistry: principles, applications, and disadvantages

Citations: 172

Comparison of chemical and biological properties of metal nanoparticles (Au, Ag), with metal oxide nanoparticles (ZnO-NPs) and their applications

Citations: 51

Review of therapeutic applications of nanotechnology in medicine field and its side effects

Citations: 41

Review of phytochemical and medical applications of Annona muricata Fruits

Citations: 32

Recent Biological Applications and Chemical Synthesis of Thiohydantoins

Citations: 24

Highly stable noble metal nanoparticles dispersible in biocompatible solvents: synthesis of cationic phosphonium gold nanoparticles in water and DMSO

Citations: 24

Synthesis and molecular docking studies of some thiohydantoin derivatives as potential anticancer and antimicrobial agents

Citations: 16

Biofabrication of Silver Nanoparticles Using Teucrium Apollinis Extract: Characterization, Stability, and Their Antibacterial Activities

Citations: 13

Study on the effects of biologically active amino acids on the micellization of anionic surfactant sodium dodecyl sulfate (SDS) at different temperatures

Citations: 7

Evaluation of Antimicrobial and Antioxidant Activities of Psidium guajava L growing in Libya

Citations: 7

 

 

Prof . Anita Kamra Verma | Nanomedicine | Best Researcher Award

Prof . Anita Kamra Verma | Nanomedicine | Best Researcher Award

Prof. Anita Kamra Verma,University of Delhi,India

Prof. Anita Kamra Verma is a renowned Professor at the Department of Zoology, Kirori Mal College, University of Delhi, and a Fellow at the Delhi School of Public Health. With over 33 years in teaching and research, her expertise spans nanobiotechnology, cancer biology, nanomedicine, and nanotoxicology. She has supervised 20 Ph.D. scholars, published ~140 papers, and holds two patents in anti-cancer drugs. Her research, supported by agencies like ICMR and DST-Power, focuses on developing nano-therapeutics and drug delivery systems for diseases like cancer and diabetes. Prof. Verma has received numerous accolades, including the Distinguished Collaborator Award from the University of Central Lancashire, UK, and the Teacher Excellence Award from the University of Delhi.

Professional Profile:

Google Scholar

Scopus

 Orcid

Summary of Suitability for Award

The candidate’s impressive academic and research accomplishments demonstrate a robust record of excellence, innovation, and international collaboration, solidifying their standing as a leading researcher. With numerous prestigious awards honoring their contributions to public health, pharmaceutics, nanotechnology, and global partnerships, they are highly suited for the “Best Researcher Award.” These achievements highlight their unwavering dedication to advancing knowledge and positively impacting the scientific and academic communities.

🎓Education:

Prof. Anita Kamra Verma has an extensive academic and professional background in Zoology, with over three decades of experience in research and teaching. Holding a Ph.D. from Magadh University (1988) and both undergraduate and postgraduate degrees from the University of Delhi,  Prof. Anita Kamra Verma has made significant contributions to the field. Early in her career, she completed postdoctoral research at the National Institute of Immunology (1994-1997) and served as a Senior Scientist at the University of Manchester’s School of Pharmacy (1998-2000). Prof. Anita Kamra Verma joined Kirori Mal College, University of Delhi, as a Lecturer in Zoology, progressing to Associate Professor in 2003 and becoming a Professor in 2018. Her dedication to research and teaching has made her an invaluable asset in academia.

🏢Work Experience:

Prof. Anita Kamra Verma is a distinguished academic in the field of Zoology, currently serving as a Professor in the Department of Zoology at Kirori Mal College, University of Delhi, since May 2018. Prior to this role, she held the position of Associate Professor at the same institution from July 2003 to April 2018. Her academic journey began at A.N College in Patna, where she served as a Lecturer from June 1990 to June 1998, later becoming a Reader in the same department from June 1998 to June 2003. With over 33 years of teaching and research experience, Prof.Anita Kamra Verma has made significant contributions to the fields of nanobiotechnology, cancer biology, and nanomedicine.

🏅Awards:

Prof. Anita Kamra Verma has received numerous accolades throughout her distinguished career, reflecting her exceptional contributions to research and education. In 2022, she was honored as a Fellow at the Delhi School of Public Health, Institution of Eminence. She received the Teacher Excellence Award for Research and Teaching from the University of Delhi in 2021 and was recognized with the Distinguished Collaborator Award by the Department of Pharmaceutics, University of Lancashire, in 2019. Additionally, she was awarded the Bharat Ratna Dr. A. P. J. Abdul Kalam Memorial Best Teacher Award and the Lifetime Achievement Award in BIOMEDCON-2018, both in 2018. Earlier in her career, she was recognized with the Charles Darwin Gold Medal at the International Conference on Recent Trends in Life Sciences in 2009, underscoring her significant impact in her field.

🔬Research Focus:

Prof. Anita Kamra Verma specializes in several cutting-edge fields, including nanobiotechnology, cancer biology, and nanomedicine. Her research investigates the potential of nanotechnology in developing innovative therapeutic strategies for cancer treatment and drug delivery. Additionally, she explores nanotoxicology to understand the safety and biological effects of nanomaterials. Prof. Verma also delves into the immunological aspects of rheumatoid arthritis, aiming to uncover novel insights into disease mechanisms and treatment approaches. Her interdisciplinary work not only advances scientific understanding but also seeks to translate findings into practical applications in medicine.

Publication Top Notes:

  • Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nanoparticles
    Citations: 162
  • An epidemiological study of correlates of osteoarthritis in the geriatric population of UT Chandigarh
    Citations: 158
  • Assessment of the multifaceted immunomodulatory potential of the aqueous extract of Tinospora cordifolia
    Citations: 115
  • Assessing the potential of lignin nanoparticles as drug carrier: Synthesis, cytotoxicity, and genotoxicity studies
    Citations: Not specified (please provide if needed)
  • Global lockdown: An effective safeguard in responding to the threat of COVID‐19
    Authors: B.K. Verma, M. Verma, V.K. Verma, R.B. Abdullah, D.C. Nath, H.T.A. Khan, …
    Citations: Not specified (please provide if needed)

 

 

Anindita Dey | Nanotechnology | Best Researcher Award

Dr. Anindita Dey | Nanotechnology | Best Researcher Award

Doctorate at Asutosh College, India

Dr. Anindita Dey (née Mondal) is a distinguished academic and researcher in Botany, specializing in biophysics and the study of nanoparticles’ effects on plant systems. With over a decade of experience, she has contributed significantly to understanding how engineered nanoparticles can enhance agricultural practices and energy conversion. Currently serving as an Assistant Professor at Asutosh College in Kolkata, Dr. Dey is known for her commitment to both teaching and research, making her a respected figure in her field.

Author Metrics

Google Scholar Profile

Dr. Dey has an impressive publication record with 27 research papers, highlighting her contributions to biophysics and nanotechnology. Her work has gained considerable recognition, reflected in her citation metrics, showcasing her influence in the scientific community. Additionally, she holds two patents related to her research, emphasizing her focus on practical applications and innovative solutions in agriculture and energy.

Education

Dr. Dey’s educational path is marked by academic excellence, beginning with her B.Sc. and M.Sc. degrees in Botany from The University of Burdwan, where she specialized in biochemistry. She earned her Ph.D. in Biophysics from Jadavpur University in 2013, focusing on the interaction between nanoparticles and plant growth regulation. This strong academic foundation has equipped her with the knowledge and skills necessary for her research career.

Research Focus

Dr. Dey’s research primarily investigates the impact of nanoparticles on plant growth and metabolic processes. She explores the potential of these nanoparticles as nano-fertilizers and their role in enhancing crop yield and sustainability. Additionally, her studies examine how nanoparticles interact with plant regulatory proteins and their environmental implications, contributing valuable insights to the field of nanobiotechnology.

Professional Journey

Dr. Dey began her career as a Junior Research Fellow at Jadavpur University, where she conducted interdisciplinary research on energy conversion systems. She later advanced to Senior Research Fellow positions, focusing on the effects of nanoparticles on plant systems. Since 2013, she has served as an Assistant Professor at Asutosh College, balancing her teaching responsibilities with ongoing research endeavors in her specialized field.

Honors & Awards

Throughout her career, Dr. Dey has received numerous accolades for her innovative research. She has been awarded patents for her findings, particularly related to the agricultural applications of nanotechnology. Her contributions have been recognized at various conferences, where she has presented her work and received commendations for her impactful research aimed at sustainable agricultural practices.

Publications Noted & Contributions

Dr. Dey’s publication record includes significant papers in high-impact journals, focusing on the effects of nanoparticles on plant growth and energy conversion. Her notable contributions cover studies on the phytotoxicity of nano materials, the benefits of carbon nanotubes in agriculture, and advancements in solar energy conversion technologies. These publications not only advance scientific knowledge but also promote the development of sustainable practices in agriculture.

Guar gum micro-vehicle mediated delivery strategy and synergistic activity of thymoquinone and piperine: An in vitro study on bacterial and hepatocellular carcinoma cells
Authors: S. Das, D. Bera, K. Pal, D. Mondal, P. Karmakar, S. Das, A. Dey
Journal: Journal of Drug Delivery Science and Technology
Year: 2020
Summary: This study investigates a novel delivery strategy using guar gum micro-vehicles for thymoquinone and piperine, demonstrating their synergistic effects on bacterial and cancer cells.

Increased quantum efficiency in hybrid photoelectrochemical cell consisting of thionine and zinc oxide nanoparticles
Authors: A. Mondal, R. Basu, S. Das, P. Nandy
Journal: Journal of Photochemistry and Photobiology A: Chemistry
Year: 2010
Summary: This research focuses on enhancing the quantum efficiency of hybrid photoelectrochemical cells by integrating thionine with zinc oxide nanoparticles, contributing to advancements in energy conversion technologies.

Enhanced antibacterial activity of a novel biocompatible triarylmethane based ionic liquid-graphene oxide nanocomposite
Authors: S. Prusty, K. Pal, D. Bera, A. Paul, M. Mukherjee, F. Khan, A. Dey, S. Das
Journal: Colloids and Surfaces B: Biointerfaces
Year: 2021
Summary: This article discusses the antibacterial properties of a new ionic liquid-graphene oxide composite, highlighting its biocompatibility and potential applications in medical and environmental fields.

Dual release kinetics in a single dosage from core–shell hydrogel scaffolds
Authors: F. Khan, D. Bera, S. Palchaudhuri, R. Bera, M. Mukhopadhyay, A. Dey, …
Journal: RSC Advances
Year: 2018
Summary: This study explores the dual release mechanisms of drugs from core-shell hydrogel scaffolds, emphasizing their potential for controlled drug delivery applications.

Heat induced voltage generation in electrochemical cell containing zinc oxide nanoparticles
Authors: A. Mondal, R. Basu, S. Das, P. Nandy
Journal: Energy
Year: 2010
Summary: The research examines the voltage generation capabilities of electrochemical cells that utilize zinc oxide nanoparticles under heat, contributing to the understanding of energy conversion processes.

A study on the phytotoxicity of nano mullite and metal-amended nano mullite on mung bean plants
Authors: A. Dey, B. Bagchi, S. Das, R. Basu, P. Nandy
Journal: Journal of Environmental Monitoring
Year: 2011
Summary: This paper investigates the phytotoxic effects of nano mullite and its metal amendments on mung bean plants, providing insights into the environmental impact of nanoparticles in agriculture.

Research Timeline

Dr. Dey’s research journey began as a Junior Research Fellow at Jadavpur University from 2008 to 2010, focusing on energy conversion using bio-mimetic systems. She continued as a Senior Research Fellow under the Department of Science & Technology from 2010 to 2011, studying nanoparticles’ effects on plants. From 2011 to 2013, she was a Senior Research Fellow at CSIR, furthering her research on energy conversion and plant growth regulation. Since 2013, she has been an Assistant Professor at Asutosh College, actively engaged in teaching and research projects.

Conclusion

Dr. Anindita Dey’s career embodies a strong dedication to advancing research in Botany and biophysics, particularly through her studies on nanoparticles. Her educational background, professional achievements, and extensive publications illustrate her commitment to scientific exploration and innovation. As she continues her work, Dr. Dey aims to enhance understanding of sustainable agricultural practices and the applications of nanotechnology in biological systems.