Kev Salikhov | Physical Chemistry | Best Researcher Award

Prof. Dr. Kev Salikhov
| Physical Chemistry
| Best Researcher Award

Prof. Dr. Kev Salikhov | Kazan Institute of Physics and Technology | Russia

Prof. Dr. Kev M. Salikhov, a distinguished physicist and full member of the Russian Academy of Sciences, is internationally recognized as one of the founders of spin chemistry and a pioneer in magnetic resonance research.  he graduated from Kazan State University and went on to make fundamental contributions to spin physics, quantum coherence, and the theory of chemical reactions. His groundbreaking theoretical work explained the influence of external magnetic fields on radical reactions and the magnetic isotope effect, laying the foundation for new scientific fields such as MARY spectroscopy and advanced EPR/NMR methodologies. He developed the theory of pulsed EPR techniques, spin echo modulation, phase relaxation, and selective excitation, as well as the widely applied PELDOR method for nanometric distance measurements between paramagnetic centers. His research extended to elucidating the primary stages of charge separation in photosynthesis, quantum beats in EPR spectra, and exchange interactions in paramagnets. With over 210 publications, more than 2,621 citations by 1,690 documents and an h-index of 26, Scopus Author ID: 7003735739. Prof. Salikhov’s influence spans theoretical physics, chemistry, quantum information, and nanometrology. As long-time director and now scientific director of the Kazan Institute of Physics and Technology, and founder of Applied Magnetic Resonance, he continues to shape international research in magnetic resonance and quantum science.

Profile:  Scopus | Google Scholar

Featured Publications

  • Salikhov, K. M., Molin, Y. N., Sagdeev, R. Z., & Buchachenko, A. L. (1984). Spin polarization and magnetic effects in radical reactions. Amsterdam: Elsevier.

  • Molin, J. N., Salikhov, K. M., & Zamaraev, K. I. (1980). Spin exchange: Principles and applications in chemistry and biology. Berlin: Springer-Verlag.

  • Milov, A. D., Salikhov, K. M., & Shirov, M. D. (1981). Application of ELDOR in electron-spin echo for paramagnetic center space distribution in solids. Fizika Tverdogo Tela, 23(4), 975–982.

  • Salikhov, K. M., Semenov, A. G., & Tsvetkov, Y. D. (1976). Electron spin echo and its applications. Novosibirsk: Nauka, Science.

Konstantin Bogolitsyn | Physical Chemistry | Best Researcher Award

Prof. Konstantin Bogolitsyn | Physical Chemistry | Best Researcher Award

Prof. Konstantin Bogolitsyn | Northern (Arctic) Federal University | Russia

Prof. Konstantin Bogolitsyn is a distinguished Russian chemist, science organizer, and academic leader, widely recognized for his pioneering contributions to the chemistry of plant biopolymers and environmental safety. A Doctor of Chemical Sciences (1987), Professor (1988), and Honored Scientist of the Russian Federation (1999), he has played a key role in advancing both theoretical and applied chemistry, particularly through the foundation of the scientific school Physical Chemistry of Plant Polymers in Arkhangelsk. Over his career, he has served in numerous influential positions, including Director of the Institute of Chemistry and Chemical Technology of Wood, Scientific Director at the Institute of Environmental Problems of the North, and Vice-Rector for Research at NArFU, while also contributing to national and international scientific councils and editorial boards. His research achievements include the development of thermodynamic models of lignocarbohydrate matrices, modern oxidative and organosolvent delignification methods, supercritical fluid technologies, and analytical approaches to industrial wastewater treatment. He has supervised more than 40 doctoral and candidate dissertations, led over 30 major research projects, and contributed to more than 800 publications, including 11 monographs, 35 textbooks, and over 40 patents. With 996 citations across 744 documents and an h-index of 16, his work demonstrates lasting scientific influence. He is the recipient of numerous honors, including the Order of (2004), Vernadsky Medal (2014), “Professor of the Year” (2018), the Heritage of the North Award (2020), and the State Mentoring Award (2021), reflecting his enduring impact as both a researcher and mentor.

Profile:  Scopus

Featured Publications

  • Effects of the acidity of the medium on the structure of Nile Red. (2025). Russian Journal of Physical Chemistry A.

  • Electrophysical properties of heartwood and sapwood of Scots pine. (2025). Journal of the Indian Academy of Wood Science.

  • Physicochemical aspects of hydrogel preparation from algal cellulose. (2025). International Journal of Biological Macromolecules.

  • Evaluation of the bioactive potential of four Arctic brown algae. (2025). Chemistry of Natural Compounds.

  • Plant polymers and their sorption activity to radium ions. (2025). Turczaninowia. (Open access).

 

Caiyan Tian | Physical Chemistry | Best Researcher Award

Dr. Caiyan Tian | Physical Chemistry | Best Researcher Award

Dr. Caiyan Tian | Leibniz Institute for Analytical Sciences – ISAS – Registered Association | Germany

Dr. Caiyan Tian is a Research Associate and Ph.D. candidate in Biochemical and Chemical Engineering at the Leibniz Institute for Analytical Sciences (ISAS) and Technische Universität Dortmund, Germany, with research interests focused on ambient mass spectrometry, soft ionization, and plasma characterization. She holds a B.Sc. in Life Science from Tianshui Normal University (2014) and an M.Sc. in Biochemical and Molecular Biology from Sichuan University (2017), followed by professional experience in project management at Sichuan Kelun Pharmaceutical Co., Ltd. (2018–2020). Since 2020, she has been actively engaged in advanced plasma science research, contributing as a key participant in the Horizon 2020 project “Twinning in Atmospheric Plasma Science and Applications . Her scholarly record includes nine peer-reviewed publications in high-impact journals such as Spectrochimica Acta Part B and Analytical and Bioanalytical Chemistry, addressing fundamental mechanisms of soft ionization in flexible micro-tube plasmas, optical diagnostics, and ionization of semi-fluorinated compounds under controlled conditions. She is also a co-inventor on a German patent  for gas-phase ionization using plasma discharge, demonstrating her innovation in translating fundamental findings into practical technologies. With 18 citations across 9 documents and an h-index of 3, her growing impact reflects both the novelty and relevance of her research. Looking forward, her expertise in soft ionization mechanisms and plasma-based ionization sources is expected to significantly advance analytical sciences and expand applications in environmental, biomedical, and pharmaceutical analysis.

Profile:  Scopus | Orcid

Featured Publications

  • Tian, C., Speicher, L., Xue, D., Moreno-González, D., Marggraf, U., Ahlmann, N., Brandt, S., Franzke, J., & Niu, G. (2022). Ionization of semi-fluorinated n-alkanes in controlled atmosphere using flexible micro-tube plasma (FμTP) ionization source with square- and sine-wave voltage. Talanta, 252, 123662.

    Tian, C., Ahlmann, N., Brandt, S., Franzke, J., & Niu, G. (2021). Optical characterization of miniature flexible micro-tube plasma (FμTP) ionization source: A dielectric guided discharge. Spectrochimica Acta Part B: Atomic Spectroscopy, 180, 106222.

    Tian, C., Yin, J., Zhao, Z., Zhang, Y., & Duan, Y. (2017). Rapid identification and desorption mechanisms of nitrogen-based explosives by ambient micro-fabricated glow discharge plasma desorption/ionization (MFGDP) mass spectrometry. Talanta, 165, 502–509.

    Tian, C., Ding, X., Yin, J., & Duan, Y. (2016). Preliminary study of microfabricated glow discharge plasma for mass spectrometry imaging. Chinese Journal of Analytical Chemistry, 44(1), 92–98.

 

 

 

Jie Hou | Physical Chemistry | Best Researcher Award

Assoc. Prof. Dr. Jie Hou | Physical Chemistry
| Best Researcher Award

Assoc. Prof. Dr. Jie Hou | Anhui University | China

Assoc. Prof. Dr. Jie Hou is an Associate Professor at the, Anhui University, China, whose research focuses on advanced surface science, spintronics, and low-temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS). He earned his PhD in Physical Chemistry at Tohoku University, Japan, under the supervision of Prof. Tadahiro Komeda, following an MS from Zhejiang Normal University and a BS from Harbin Normal University in China. After completing his doctorate, Dr. Hou held prestigious postdoctoral appointments in Japan, Spain, and Germany, working with internationally renowned experts such as Prof. Lucia VITALI and Prof. Richard BERNDT, further advancing his expertise in spin state manipulation, quantum materials, and molecular electronics. His research interests include the detection and control of single spin states, the interplay of Cooper pairs, Yu-Shiba-Rusinov bound states, and Kondo screening, as well as the design of ultra-high-vacuum instrumentation. Dr. Hou has published 16 peer-reviewed articles in high-impact journals such as Applied Surface Science, Journal of Materials Chemistry C, Communications Chemistry, and Advanced Functional Materials, contributing to the fields of spin dynamics, superconductivity, and nanomaterials. He holds a patent on functionalized mesoporous cerium oxide, reflecting his applied research outcomes. His academic contributions are recognized with honors such as the Young Researcher’s Award at the ISSS-8 Symposium in Japan and selection as a candidate for the “One Hundred Talents Project” in Anhui Province, China. With 180 citations across 175 documents, an h-index of 4, and a growing international profile, Dr. Hou continues to advance frontiers in nanoscale physics through innovative research, global collaborations, and teaching excellence.

Profile: Scopus

Featured Publication

  • Hou, J., Xu, N., Khan, M. Z. H., Shan, L., & Komeda, T. (2025). Revealing hydrogen bonding in ordered dopamine films through inelastic tunnelling spectroscopy. Applied Surface Science, 694, 162852.

    Hou, J., Xu, N., Khan, M. Z. H., & Komeda, T. (2023). Spin state manipulation of spiropyran (SP) and Dy complex with SP ligand molecules on Au(111) by scanning tunneling microscopy. Communications Chemistry, 6(1), 37.

    Hou, J., Vázquez, H., & Komeda, T. (2020). Enhanced magnetic spin-spin interactions observed between porphyrazine-derivatives on Au(111). Journal of Materials Chemistry C, 8(46), 16513–16519.

    Hou, J., & Komeda, T. (2018). Porphyrazine film on Au(111). Beilstein Journal of Nanotechnology, 9, 2051–2057.

    Hou, J., Liu, Z., Zhang, Z., Wang, Y., & Viti, L. (2022). Ultrabroadband photodetector based on ferromagnetic van der Waals heterodiode. Advanced Functional Materials, 32(48), 2207561.

 

 

Mr. Salim Houamer | Physical Chemistry | Best Researcher Award

Mr. Salim Houamer | Physical Chemistry | Best Researcher Award

Mr. Salim Houamer , Physical Chemistry , University ferhat abbas Setif1, Algeria

Prof. Salim Houamer is a renowned Algerian physicist specializing in theoretical atomic and molecular physics. Based at the University of Sétif 1, Algeria, he is affiliated with the Laboratory of Physics of Quantum Systems and Data (LPQSD). With dual doctorates—one from the University of Sétif and another from the University of Metz, France—he has significantly contributed to the understanding of atomic collisions and Compton scattering. Prof. Houamer has taught numerous advanced physics courses and has supervised several Ph.D. theses. His prolific collaborations with international researchers have resulted in highly cited papers in Nature Physics, Physical Review Letters, and EPJD. A respected mentor and scholar, he continues to lead research in atomic-scale phenomena. Through his academic and scientific endeavors, he has played a vital role in advancing Algeria’s presence in global physics research.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Salim Houamer is a distinguished theoretical physicist whose work significantly advances the fields of atomic and molecular collisions and Compton scattering. His academic background includes dual doctorates from Algeria and France, indicating a high level of international academic training. He has published in top-tier journals, including Nature Physics and Physical Review Letters, which is a hallmark of impactful and widely recognized scientific contributions. His research output reflects consistent innovation, particularly in modeling ionization processes and collaborating on high-precision experimental validations His involvement in international collaborations, highly cited publications, and long-term contributions to teaching and mentoring position him as a leading figure in theoretical atomic physics. Prof. Salim Houamer is highly suitable for the “Best Researcher Award”. His record of doctoral supervision, publication in elite journals, and sustained scientific engagement over decades clearly meets—and exceeds—the standards typically expected for this prestigious recognition. He would be a worthy and impactful recipient of the “Best Researcher Award”.

🎓Education:

Prof. Salim Houamer’s academic journey began at Algiers University, where he earned both his Diplome d’études supérieurs and Magister degrees in theoretical physics. He further pursued a Doctorat d’état at the University of Sétif, Algeria, solidifying his research foundation in atomic and molecular physics. To broaden his international exposure and scientific perspective, he completed a second doctorate—Doctorat d’université—at the University of Metz, France, focusing on advanced quantum mechanical models and theoretical physics. These comprehensive educational experiences equipped him with rigorous analytical tools and laid the groundwork for his future contributions to molecular collision theory, Compton scattering, and molecular ionization dynamics. His dual training in both Algerian and European institutions has allowed him to bridge scientific communities across borders and elevate the quality of physics research and pedagogy in his home country and beyond.

🏢Work Experience:

Prof. Houamer has over two decades of university teaching experience in core and advanced physics subjects. At the University of Sétif 1, he has taught Introduction to Mechanics, Electricity and Magnetism, Quantum Mechanics (Introductory and Advanced), Atomic and Molecular Physics, Statistical Physics, Electrodynamics, and Physical Optics. His comprehensive knowledge of physics has benefited undergraduate and postgraduate students alike. As an academic advisor, he has supervised six doctoral theses between 2011 and 2024 and is currently guiding three new Ph.D. candidates. In parallel, Prof. Houamer has been actively engaged in research collaborations with renowned physicists across Europe and Asia, contributing to both theoretical models and experimental validations. His expertise in atomic collisions and Compton scattering has earned him international recognition. His deep engagement with scientific problems and ability to translate theory into insight make him a pillar in the Department of Physics at Setif University.

🏅Awards: 

While specific awards and honors are not listed, Prof. Salim Houamer’s achievements are reflected in his co-authorship in prestigious journals such as Nature Physics, Physical Review Letters, and EPJD, which speaks volumes about his international recognition and scientific impact. His collaboration with top experimental groups worldwide and publication in high-impact journals are testaments to his standing in the global scientific community. He has also played a crucial mentorship role, guiding multiple doctoral students over the past decade. Invitations to collaborate in international experiments and theoretical validations reflect the respect he commands in the physics community. His inclusion in cross-continental research teams and participation in multi-institutional studies further affirm his peer recognition. While not officially recorded here, such distinctions often serve as de facto honors in academia, particularly in theoretical and computational physics.

🔬Research Focus:

Prof. Salim Houamer’s research is centered on atomic and molecular collisions involving charged particles and Compton scattering phenomena. He specializes in modeling and analyzing ionization processes, particularly the interaction of electrons and positrons with atoms and molecules. His work bridges nonrelativistic quantum mechanics and experimental verification, providing insights into phenomena such as single and double ionization, triple differential cross sections, and low-energy electron impacts. Recent publications involve detailed studies on helium and water molecules, using advanced theoretical frameworks to match and guide experimental results. He collaborates with physicists worldwide to contribute to cutting-edge research on momentum distributions, threshold phenomena, and electron-photon interactions. His work is vital in fields such as radiation physics, quantum scattering, and molecular spectroscopy, making significant contributions to both applied and theoretical aspects of atomic physics.

Publication Top Notes:

1. Electron impact ionization of atoms and molecules: An improved BBK model

2. Compton double ionization of the helium atom: Can it be a method of dynamical spectroscopy of ground state electron correlation?

3. Compton Ionization of Atoms as a New Method of Spectroscopy of Outer Shells

4. Ion and Electron Momentum Distributions from Single and Double Ionization of Helium Induced by Compton Scattering

5. Compton ionization of atoms as a method of dynamical spectroscopy

6. Ion and Electron Momentum Distributions from Single and Double Ionization of Helium Induced by Compton Scattering (ArXiv Preprint)

7. Compton ionization of hydrogen atom near threshold by photons in the energy range of a few keV: nonrelativistic approach

Citations: 12

8. Kinematically complete experimental study of Compton scattering at helium atoms near the threshold

9. New investigation of the electron-impact ionization of the intermediate valence state of ammonia

 

 

 

Assoc. Prof. Dr. Xiaoming Zhang | Physical Chemistry | Women Researcher Award

Assoc. Prof. Dr. Xiaoming Zhang | Physical Chemistry | Women Researcher Award

Assoc. Prof. Dr. Xiaoming Zhang , Physical Chemistry , Minzu University of China , China

Dr. Zhang Xiaoming is an Associate Professor in Physical Chemistry at the College of Science, Minzu University of China. She specializes in functional self-assembly and interfacial physics of nanomaterials for applications in energy batteries, photocatalytic water splitting, and ultra-high-resolution imaging. She earned her Ph.D. from the Institute of Chemistry, Chinese Academy of Sciences in 2007. Dr. Zhang has held postdoctoral positions at Keio University (Japan), Dublin City University (Ireland), and the National Center for Nanoscience and Technology (China). She has published over 60 SCI-indexed papers and led multiple national and municipal research projects. Her work bridges fundamental nanoscience with real-world applications in energy and biotechnology. She is actively involved in editorial boards and academic committees and has received several teaching and research awards. She also mentors postgraduate and international postdoctoral researchers, contributing to global scientific exchange.

Professional Profile : 

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Zhang holds a Ph.D. in Physical Chemistry from the prestigious Institute of Chemistry, Chinese Academy of Sciences, with additional advanced training from globally recognized institutions such as Keio University (Japan) and Dublin City University (Ireland). She has published over 60 SCI-indexed papers as first or corresponding author, indicating her leading role in innovative research. Her work on nanomaterials, interfacial physics, and applications in energy storage, photocatalysis, and super-resolution imaging is both interdisciplinary and of high societal relevance. Dr. Zhang is the Principal Investigator for a major National Natural Science Foundation of China project and has led/co-led several national and international research initiatives, including talent introduction and key development programs. She is a Master’s and Ph.D. supervisor, actively mentoring both domestic and international researchers, especially women and underrepresented groups, thus contributing to capacity building and gender equity in science. Dr. Zhang Xiaoming embodies the ideal profile for the “Women Researcher Award”—a dynamic scientist who excels in cutting-edge research, mentors the next generation, contributes to international scientific dialogue, and advances gender representation in science. Her contributions not only enrich the scientific community but also serve as a role model for aspiring women researchers globally. Awarding her would recognize and further empower women’s leadership in science and technology.

🎓Education:

Dr. Zhang Xiaoming completed her Ph.D. in Physical Chemistry (2007) at the Institute of Chemistry, Chinese Academy of Sciences under the supervision of Prof. Junbai Li. She earned her M.Sc. in Physical Chemistry (2004) from Shandong Normal University, mentored by Prof. Zexin Wang, where she began her research into molecular self-assembly. Prior to that, she obtained her B.Sc. in Chemistry (2001) from the same university. Her education laid the foundation for her interdisciplinary approach, combining chemistry, nanotechnology, and physics. Through her studies, she developed a deep understanding of surface chemistry, interfacial interactions, and bio-functionalization, which now underpin her research on nanomaterial design for energy and biomedical applications.

🏢Work Experience:

Dr. Zhang has extensive academic and industrial experience. Since 2017, she has served as an Associate Professor at Minzu University of China. Before that, she was Deputy General Manager and Senior Engineer at the American Bentley Company (Beijing) from 2015 to 2017. Her academic journey includes postdoctoral positions at Keio University (Japan, 2007–2008), Dublin City University (Ireland, 2010–2012), and the National Center for Nanoscience and Technology, China (2012–2015). This international research exposure has shaped her cross-disciplinary expertise in nanoscience, interfacial physics, and functional materials. She has been actively involved in major national-level research projects and contributes to graduate education and talent training initiatives.

🏅Awards: 

Dr. Zhang has received numerous awards for her academic, research, and teaching excellence. These include the 2025 Outstanding Individual in Undergraduate Recruitment Publicity and 2024 Outstanding Work Performance awards from Minzu University. She earned Second Prize in the 2024 Education and Teaching Innovation Competition and several awards for teaching excellence, including the First Prize in the 11th Teaching Competition and the Best Teaching Demonstration Award (2018). Her research was internationally recognized with the IRCSET EMPOWER Fellowship (2010) in Ireland. She has also been honored as an Outstanding Instructor and Outstanding Communist Party Member and continues to be a highly active contributor in national education evaluations and academic forums.

🔬Research Focus:

Dr. Zhang’s research focuses on functional nanomaterials, particularly their self-assembly, bio-functionalization, and interfacial physics. Her goal is to harness these properties for energy storage, photocatalytic water splitting, and ultra-high resolution fluorescence imaging. Her interdisciplinary approach blends chemistry, nanotechnology, and biology. She investigates how nanostructures form and behave at interfaces, which is key to improving battery performance and catalytic efficiency. One of her recent projects explores the co-assembly of glucagon-like peptide GLP-1 with lipopeptides, using super-resolution fluorescence microscopy to visualize intracellular transport. She also studies the epitaxial growth of GeSn alloys for use in mid-infrared photodetectors, expanding her expertise into semiconductor applications.

Publication Top Notes:

1. High-performance ethanol detection achieved by WO₃/Co₃O₄ composite heterojunctions with synergistic p-n junction features

2. Probing Peptide Assembly and Interaction via High-Resolution Imaging Techniques: A Mini Review.

3. Engineering of peptide assemblies for adaptable protein delivery to achieve efficient intracellular biocatalysis

4. Manganese doped tailored cobalt sulfide as an accelerated catalyst for oxygen evolution reaction

5. Solution-processed, ultrasensitive, high current density vertical phototransistor using porous carbon nanotube electrode

6. Dramatic increase in SWIR detection for GeSn strip detector with graphene hybrid structure

7. A review on III–V compound semiconductor short wave infrared avalanche photodiodes

8. Two-dimensional antimony selenide (Sb₂Se₃) nanosheets prepared by hydrothermal method for visible-light photodetectors

9. Fabrication of graphene: CdSe quantum dots/CdS nanorod heterojunction photodetector and role of graphene to enhance the photoresponsive characteristics

10. One-Step Synthesis of SiOx@Graphene Composite Material by a Hydrothermal Method for Lithium-Ion Battery Anodes