Dr. Muhammad Yousaf | Energy Storage | Editorial Board Member
Research Scientist | Shenzhen University | China
Dr. Muhammad Yousaf is a multidisciplinary researcher specializing in nanomaterials, semiconductor physics, ferrite-based functional materials, and advanced energy technologies, with a strong focus on solid oxide fuel cells, electrochemical energy storage, and dielectric applications. His research integrates material synthesis, interfacial engineering, defect chemistry, electrocatalysis, and charge transport phenomena to develop next-generation energy devices operating efficiently at low temperatures. Dr. Yousaf has made significant contributions to proton-, oxygen-ion-, and electron-conducting materials, pioneering heterostructure interfaces, dual-functional electrolytes, and advanced ferrite semiconductors for fuel cell applications. His expertise spans solid oxide electrolysis materials for hydrogen production, dielectric materials for antenna systems, magnetic nanomaterials, mixed ionic-electronic conductors, and high-performance semiconductor devices. He has also extensively explored spinel, garnet, and hexagonal ferrites for magneto-optical, microwave absorption, and high-frequency applications. Dr. Yousaf is proficient with a broad range of advanced characterization and computational tools, enabling deep insights into structural, electronic, and electrochemical properties of functional materials. With over 100 peer-reviewed publications as first, corresponding, equal-first, or co-author, he has demonstrated a sustained and impactful research output. His work has earned 2453 citations on Google Scholar (h-index 31, i10-index 68) and 2243 citations on Scopus across 104 documents (h-index 29), reflecting strong international recognition. His ongoing research continues to drive innovation in nano-energy devices, catalytic interfaces, and next-generation energy storage and conversion systems.
Profiles : Google Scholar | Scopus
Featured Publications :
-
Yousaf, M., Lu, Y., Akhtar, M. N., Khawaja, A. S., Batoo, K. M., Hussain, S., Noor, A., et al. (2023). Tailoring triple charge (O2−/H+/e−) conducting nature of Fe-based lanthanum doped samarium oxides for ceramic fuel cells (CFCs). Fuel, 349, 128689.
-
Yousaf, M., Lu, Y., Hu, E., Akbar, M., Shah, M. A. K. Y., Noor, A., Akhtar, M. N., et al. (2024). Advances in solid oxide fuel cell technologies: Lowering the operating temperatures through material innovations. Materials Today Proceedings.
-
Yousaf, M., Lu, Y., Hu, E., Akbar, M., Shah, M. A. K. Y., Noor, A., Akhtar, M. N., et al. (2023). Interfacial disordering and heterojunction enabling fast proton conduction. Small Methods, 2300450.
-
Yousaf, M., Mushtaq, N., Zhu, B., Wang, B., Akhtar, M. N., Noor, A., & Afzal, M. (2020). Electrochemical properties of Ni0.4Zn0.6Fe2O4 and the heterostructure composites (Ni–Zn ferrite-SDC) for low temperature solid oxide fuel cell (LT-SOFC). Electrochimica Acta, 331, 135349.
-
Akbar, N., Yousaf, M., Shah, M. A. K. Y., Ahmed, J., Noor, A., Islam, Q. A., Wu, Y., et al. (2025). Boosted proton conduction in LAO electrolyte through Li segregation for high-performance ceramic fuel cells. Fuel, 386, 134255.