Dr. Ali Yazdani | Nanomaterials | Best Researcher Award

Dr. Ali Yazdani | Nanomaterials | Best Researcher Award

Dr. Ali Yazdani, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Iran

Ali Yazdani is a biomedical engineer affiliated with the School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Iran. His research primarily focuses on early cancer detection, MRI contrast agents, and bioprinting. He has contributed to groundbreaking projects in image processing for medical applications, sperm isolation using microfluidics, and tissue engineering. As the Managing Director of Omid-Afarinan Mohandesi Ayandeh Co., he plays a pivotal role in developing 3D bioprinters. He has also collaborated with Parsis Co. to develop a smart surgical software and worked at the Royan Institute to model stem cell injection timing for Lupus treatment. With three publications in indexed journals, seven research projects, ten industry projects, and one patent, his work has significantly advanced the field of biomedical engineering. His contributions to MRI contrast agent synthesis from herbal sources highlight his innovative approach in medical imaging.

Professional Profile:

Google Scholar

Summary of Suitability for Award:

Ali Yazdani is an outstanding biomedical engineer with expertise in early cancer detection, MRI contrast agents, and bioprinting. His strong academic background from the University of Tehran and interdisciplinary research contributions make him a highly qualified candidate for the Best Researcher Award. He has seven completed/ongoing research projects, ten industry collaborations, one patent, and three journal publications in SCI/Scopus-indexed journals. His work on herbal-based MRI contrast agents, AI-driven surgical software, and 3D bioprinting has made significant contributions to biomedical imaging, regenerative medicine, and personalized healthcare. His leadership as Managing Director of Omid-Afarinan Mohandesi Ayandeh Co. further highlights his innovative impact. Given his exceptional research output, innovation in medical imaging, and impactful industry collaborations, Ali Yazdani is a strong contender for the “Best Researcher Award.”

šŸŽ“Education:

Ali Yazdani pursued Bachelor’s, Master’s, and Ph.D. degrees in Biomedical Engineering at the University of Tehran. He was part of the Electrical and Computer Engineering faculty, where he specialized in mathematical modeling of autoimmune diseases and imaging techniques for early cancer detection. His research during his doctoral studies was focused on alternative sources for MRI contrast agents, where he proposed an herbal-based approach to enhance MRI imaging quality. His academic journey was enriched with hands-on laboratory experiments, validating the efficiency of herbal-based MRI contrast agents. Throughout his education, he worked on interdisciplinary projects, combining engineering, medical sciences, and biotechnology to address critical challenges in medical imaging and diagnostics. His expertise in bioprinting, medical imaging, and stem cell research has been instrumental in his continued contributions to biomedical engineering.

šŸ¢Work Experience:

Ali Yazdani has extensive experience in biomedical research and innovation. He is currently affiliated with the University of Tehran, where he has contributed to seven research projects and ten industry-sponsored projects. As the Managing Director of Omid-Afarinan Mohandesi Ayandeh Co., he is actively involved in 3D bioprinting technology. His collaboration with Parsis Co. led to the development of an AI-driven surgical guidance software. At the Royan Institute, he played a key role in a system identification project, modeling stem cell injection timing for Lupus patients. His expertise extends to medical image processing, tissue engineering, and regenerative medicine. His consulting work has supported multiple biomedical startups and research groups. With hands-on experience in MRI contrast agent synthesis, bioprinting, and stem cell research, he has significantly contributed to healthcare innovations, making biomedical diagnostics more accessible and efficient.

šŸ…Awards:Ā 

Ali Yazdani has been recognized for his contributions to biomedical engineering and innovation. His research on herbal-based MRI contrast agents earned him recognition at international medical imaging conferences. As the Managing Director of Omid-Afarinan Mohandesi Ayandeh Co., he received industry appreciation for developing 3D bioprinting technology. His work on AI-driven surgical guidance software at Parsis Co. was acknowledged as a pioneering advancement in smart surgery. His stem cell research at Royan Institute was highly regarded in the regenerative medicine field. He has also received accolades for his industry collaborations, having led ten consultancy projects. His patent on organic MRI contrast agents showcases his innovative contributions to non-invasive diagnostics. With a strong impact on medical imaging, bioprinting, and regenerative medicine, his achievements have positioned him as a leading researcher in the field of biomedical engineering.

šŸ”¬Research Focus:

Ali Yazdani’s research spans across early cancer detection, MRI contrast agents, and bioprinting. His groundbreaking work in mathematical modeling of autoimmune diseases has contributed to better understanding of disease progression. His research on MRI contrast agents aims to replace synthetic agents with herbal-based alternatives, improving biocompatibility and reducing toxicity. His innovations in bioprinting technology focus on the synthesis of viable tissues for regenerative medicine. His image processing research includes X-marker detection for surgical tools and sperm isolation using microfluidics. His stem cell differentiation research utilizes periodic pulses to enhance cardiac cell regeneration. His contributions to ultrasonic and UV-based dormancy breaking of special beads have potential applications in biotechnology and medicine. His interdisciplinary approach—blending engineering, medical imaging, and regenerative medicine—makes his research highly impactful in healthcare technology and diagnostics.

Publication Top Notes:

A biological and a mathematical model of SLE treated by mesenchymal stem cells covering all the stages of the disease

Authors: A. Yazdani, F. Bahrami, A. Pourgholaminejad, R. Moghadasali

Journal: Theory in Biosciences

Volume: 142 (2), 167-179

Citations: 4

Year: 2023

Sub-pixel X-marker detection by Hough transform

Authors: A. Yazdani, H. Aalizadeh, F. Karimi, S. Solouki, H. Soltanian-Zadeh

Conference: 2018 25th National and 3rd International Iranian Conference on Biomedical …

Citations: 3

Year: 2018

A New Herbal Source of Synthesizing Contrast Agents for Magnetic Resonance Imaging

Authors: A. Yazdani, A. Okhovat, R. Doosti, H. Soltanian‐Zadeh

Journal: International Journal of Imaging Systems and Technology

Volume: 34 (4), e23136

Citations: Not available (2024 publication)

Year: 2024

Modification of a Herbal MRI Contrast Agent: Biological Effect and Relaxivity

Authors: A. Yazdani, A. Okhovat, R. Doosti, M. Saber, H. Soltanian-Zadeh

Conference: 2023 30th National and 8th International Iranian Conference on Biomedical …

Citations: Not available

Year: 2023

 

 

 

Mrs. Amna. Bibi | Nanotechnology | Young Scientist Award

Mrs. Amna. Bibi | Nanotechnology | Young Scientist Award

Mrs. Amna. Bibi , Higher Education Department KPK , Pakistan

Amna Bibi is a dedicated Chemistry Lecturer at the Higher Education Department in KPK, Pakistan. With a strong academic background, she has distinguished herself as a passionate educator and researcher. Amna has earned her M.Phil. in Chemistry (Distinction) from the University of Science & Technology Bannu, specializing in Analytical Chemistry and Nanomaterials. Her research focuses on innovative sensing systems and nanomaterials. Amna has made significant contributions to the academic community through her involvement in teaching, research, and organizing scientific workshops. Along with her academic roles, she has demonstrated leadership in mentoring students, particularly in research and lab activities. Throughout her career, Amna has been recognized for her exceptional work, receiving multiple awards for her academic achievements and research.

Professional Profile:

OrcidĀ Ā 

Summary of Suitability for Award:

Amna Bibi’s academic achievements, groundbreaking research, leadership in academia, and commitment to scientific advancement make her an ideal candidate for the “Young Scientist Award”. Her work shows significant promise for continued contributions to the field of chemistry and its applications in environmental sustainability. AmnaĀ Bibi has consistently demonstrated academic excellence throughout her educational career, having earned distinctions at every level, including gold medals in her MSc and MPhil in Chemistry. Her research in the areas of analytical chemistry, nanomaterials, and sensing systems is cutting-edge, with publications in high-impact journals such as the Journal of Molecular Liquid and Chemical Engineering Journal. Her research has contributed to eco-friendly detection methods, which are crucial for environmental sustainability.

šŸŽ“Education:

Amna Bibi completed her M.Phil. in Chemistry with Distinction (CGPA 4.0/4.0) at the University of Science & Technology Bannu (2020-2023), specializing in Analytical Chemistry, focusing on Nanomaterials and Sensing Systems. She also earned her MSc in Analytical Chemistry (Distinction, 2418/2700) from the same university (2013-2016), where her research delved into nanomaterials and sensing systems. Her undergraduate degree, a BSc in Physical Sciences (502/550), was completed at the University of Science & Technology Bannu (2011-2013), with a major in Chemistry, Botany, and Zoology. Additionally, Amna completed her B.Ed. (2014-2016) and M.Ed. (2016-2018) from Allama Iqbal Open University, Islamabad. Her strong academic foundation in chemistry and education equips her with both the technical and pedagogical skills needed to contribute effectively to the academic and scientific communities.

šŸ¢Work Experience:

Amna Bibi is currently working as a Chemistry Lecturer at the Higher Education Department KPK, where she has been employed since 2017. In this role, she utilizes diverse teaching methods, including lectures, presentations, and hands-on lab demonstrations, to enhance student understanding. Amna also works as a part-time Research Assistant at the University of Science & Technology Bannu since January 2022, where she prepares and delivers lectures, supervises lab activities, and assists students in writing research papers. Previously, she served as a Chemistry Teacher at the International Islamic University Islamabad Bannu Branch (2016-2017), creating a dynamic learning environment. Throughout her career, Amna has demonstrated a strong commitment to student learning, both in classroom settings and in research-oriented environments, continuously applying her expertise in analytical chemistry.

šŸ…Awards:Ā 

Amna Bibi has earned multiple accolades throughout her academic career, reflecting her commitment to excellence. She received “Distinction” and first position in her M.Phil. (2023) and MSc (2016) studies at the University of Science & Technology Bannu. Amna was awarded the prestigious Gold Medal for achieving the highest marks in her MSc program. She also earned a Gold Medal in her BSc program (2013), further showcasing her academic prowess. In recognition of her excellence, Amna received a Need-Based Scholarship during her MSc (2015) and a Laptop under the PM’s National Laptop Scheme (2015). Additionally, she was honored with the “Best Student Award” from the University of Science & Technology Bannu in 2016. These awards highlight Amna’s consistent academic excellence and her passion for her field.

šŸ”¬Research Focus:

Amna Bibi’s research is centered on the development of nanomaterials and their applications in sensing systems. Her work explores ecofriendly and highly selective methods for detecting various ions using nanotechnology. In particular, she focuses on synthesizing silver nanoparticles and integrating them with plant extracts for efficient sensing of metal ions. Her research on electrochemical sensors aims to improve detection techniques for environmental and biological monitoring. Amna’s contributions include the application of density functional theory (DFT) in molecular analysis and the development of nanoscale probes for selective detection of hazardous substances. Her ongoing work addresses both fundamental chemistry and practical applications in environmental science, with a strong emphasis on sustainability and innovation in material chemistry.

Publication Top Notes:

  • Kinetics of silver ion encapsulation as nanoparticles using Vaccinium oxycoccos plant extract for the efficient sensing of Cr(iii) ions and its biological assessment
  • Highly selective and ecofriendly colorimetric method for the detection of iodide using green tea synthesized silver nanoparticles

 

 

 

 

 

Mon Hosseini-sarvari | Nanotechnology | Women Researcher Award

Prof Dr. Mon Hosseini-sarvari | Nanotechnology | Women Researcher Award

Full prof. of organic chemistry of Shiraz University,Ā  Iran

Seyedeh Mona Hosseini-Sarvari, born on November 17, 1972, in Shiraz, Iran, is a distinguished chemist specializing in organic chemistry and photochemistry. She earned her B.Sc., M.Sc., and Ph.D. from Shiraz University, where she now serves as a Full Professor. With an impressive academic trajectory, Dr. Hosseini-Sarvari has held visiting professorships at the University of Pennsylvania and has contributed significantly to chemical education and research. Her work is widely recognized, placing her among the top 2% of scientists globally. She has been awarded for her highly cited research papers and excellence in teaching. Her administrative roles at Shiraz University and involvement in various scientific committees reflect her dedication to advancing chemistry. Dr. Hosseini-Sarvari’s research focuses on developing innovative methodologies in organic synthesis and photochemistry, making significant contributions to the field.

Professional Profile:

Education:

Seyedeh Mona Hosseini-Sarvari completed her high school education at Asieh High School in Shiraz, Iran, graduating in June 1991. She then pursued a B.Sc. in Pure Chemistry at Shiraz University, Iran, from September 1992 to June 1996. Following her undergraduate studies, she continued at Shiraz University for her M.Sc. in Organic Chemistry from September 1996 to January 1999. She subsequently earned her Ph.D. in Organic Chemistry from the same institution, completing her doctoral studies in June 2003.

Professional Experience:

Dr. Hosseini-Sarvari has had a distinguished academic career at Shiraz University, Iran, beginning as an Assistant Professor from February 2004 to June 2008. She was then promoted to Associate Professor, a position she held from June 2008 to May 2014, before being appointed as a Full Professor in May 2014. She has also enriched her experience through several visiting professorships at the Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, USA, in 2012-2013, 2014, and 2017, under the supervision of Prof. Gary A. Molander. Additionally, she served as an Invited Professor at the University of Sulaimanie, Iraq, from 2020-2021, and at Huazhong University of Science and Technology (HUST), China, in 2023.

Research Interest:

Dr. Hosseini-Sarvari’s research interests lie primarily in the field of organic chemistry, with a focus on photochemistry and the synthesis of fine chemicals. Her work encompasses a broad spectrum of topics within organic synthesis, emphasizing the development of new methodologies and applications of photochemical processes in creating valuable chemical compounds.

Awards and Honors:

Throughout her career, Dr. Hosseini-Sarvari has received numerous awards and honors. She was recognized with the Most Cited Paper Award by Elsevier Ltd., Oxford, UK, for the period 2005-2008. She is also listed among the top 2% of scientists worldwide in all scientific fields. Her excellence in education has been acknowledged with the Distinguished Professor of Education award at Shiraz University for the academic years 2007-2008 and 2017-2018. Additionally, she has been honored as a Distinguished Research Professor for the years 2010-2011 and 2021-2022. Other notable accolades include the Award for the Development of Education Level and Writing Books in 2010-2011 and being the first rank student in her Ph.D. and M.Sc. programs in 2003 and 1999, respectively.

Research Skills:

Dr. Hosseini-Sarvari possesses a diverse set of research skills, particularly in organic synthesis and photochemistry. Her expertise includes the design and execution of complex chemical reactions, development of new synthetic methodologies, and application of photochemical techniques to create innovative chemical products. She is proficient in various laboratory techniques and instrumental analysis, contributing significantly to advancements in her field.

Publication:

  1. Title: A comparative study on the photocatalytic performance of modified graphitic carbon nitride (g-C3N4) with non-metals (P, B, S) for aerobic oxidative desulfurization
    • Authors: Z. Fouladi, S. Saki, M. Hosseini-Sarvari
    • Journal: Journal of Photochemistry and Photobiology A: Chemistry
    • Year: 2024
    • Citation: 453, 115652
  2. Title: Photoswitchable Catalytic Aerobic Oxidation of Biomass-Based Furfural: A Selective Route for the Synthesis of 5-Hydroxy-2 (5H)-furanone and Maleic Acid by Using the CdS/MOF
    • Authors: S. Saki, M. Hosseini-Sarvari, Y. Gu, T. Zhang
    • Journal: Industrial & Engineering Chemistry Research
    • Year: 2024
  3. Title: Innovative Porous Organic Polymer Incorporating Ferrocene and s-Triazine: An Effective Method for Converting Nitroarenes to Benzimidazoles Using Visible Light
    • Authors: M. Bashiri, T. Zhang, Y. Gu, M. Hosseini-Sarvari
    • Journal: Polymer
    • Year: 2024
    • Citation: 127141
  4. Title: A new dual nickel/ferrocenyl-chalcone as photoredox catalyst along with DFT studies for the three-component domino performance
    • Authors: M. Bashiri, M. Hosseini-Sarvari, S. Fakhraee
    • Journal: Journal of Photochemistry and Photobiology A: Chemistry
    • Year: 2024
    • Citation: 115494
  5. Title: Bis-ferrocenyl-hydrazide metal complexes: studying electronic functional groups as newly potent homogeneous photocatalysts for C (sp 3)–H and C (sp 2)–H bond oxidation
    • Authors: M. Bashiri, M. Hosseini-Sarvari, S. Fakhraee
    • Journal: Molecular Systems Design & Engineering
    • Year: 2024
    • Citation: 9 (1), 112-139
  6. Title: Methylene blue as an additive for acid-acid-catalyzed tandem reactions targeting on the synthesis of nitrogen-containing heterocycles
    • Authors: F. Huang, L. Guo, S. Chen, S. Saki, M. Hosseini-Sarvari, M. Li, R. Wang, R. Bai
    • Journal: Molecular Catalysis
    • Year: 2023
    • Citation: 547, 113293
  7. Title: Solvent-free visible-light-mediated α-phosphorylation and Csp3-H activation of tertiary and secondary amines at room temperature in the presence of cadmium
    • Authors: S. Firoozi, M. Hosseini-Sarvari
    • Journal: Photochemical & Photobiological Sciences
    • Year: 2023
    • Citation: 22 (8), 1839-1853
  8. Title: Visible-Light-Responsive Nano CuO/ZnO Photocatalyst for Chan–Lam Coupling Reaction and Aerobic C (sp3)–H Bond Oxidation
    • Authors: M.R. Daneshvar, M. Tavakolian, M. Hosseini-Sarvari
    • Journal: Synthesis
    • Year: 2023
    • Citation: 55 (16), 2495-2502
  9. Title: Nickel/TiO2-catalyzed Suzuki–Miyaura cross-coupling of arylboronic acids with aryl halides in MeOH/H2O
    • Authors: M. Hosseini-Sarvari, A. Dehghani
    • Journal: Monatshefte für Chemie-Chemical Monthly
    • Year: 2023
    • Citation: 154 (3), 397-405
  10. Title: From expired metformin drug to nanoporous N-doped-g-C3N4: Durable sunlight-responsive photocatalyst for oxidation of furfural to maleic acid
    • Authors: M.R. Ebrahimian, M. Tavakolian, M. Hosseini-Sarvari
    • Journal: Journal of Environmental Chemical Engineering
    • Year: 2023
    • Citation: 11 (2), 109347