Mr. Peng Zhang | Materials Chemistry | Best Researcher Award

Mr. Peng Zhang | Materials Chemistry | Best Researcher Award

Mr. Peng Zhang , Materials Chemistry, College of Mechanical Engineering, Anhui University of Technology, China

Peng Zhang is a dedicated tutor at the College of Mechanical Engineering, Anhui University of Technology. He earned his doctorate in Aerospace Manufacturing Engineering from the prestigious Nanjing University of Aeronautics and Astronautics. His early professional journey includes serving as a technician in a military aircraft assembly plant, which laid the foundation for his hands-on expertise in precision forming technologies. He has led several horizontal and vertical research projects and focuses on high-performance precision forming of light alloys and advanced aluminum-lithium composites. Peng Zhang has published over 10 papers in SCI-indexed journals as a first or corresponding author and holds two invention patents and one software copyright. His commitment to student mentorship is evidenced by his back-to-back recognition as “Excellent Instructor” during the 2022–2024 academic years.

Professional Profile : 

Scopus 

Summary of Suitability for Award:

Mr. Peng Zhang exhibits a compelling research profile that makes him a strong candidate for the “Best Researcher Award”. He holds a Ph.D. in Aerospace Manufacturing Engineering and is currently a tutor and project leader at the College of Mechanical Engineering, Anhui University of Technology. His research focuses on high-performance precision forming of light alloys, particularly Al-Li aerospace alloys, their fatigue behavior, and protective surface coatings. His interdisciplinary research directly contributes to aerospace innovation, industrial efficiency, and materials durability, aligning with key global technological priorities. His blend of practical application, innovation, and mentorship excellence makes him highly suitable for this recognition. Yes, Mr. Peng Zhang is highly suitable for the Best Researcher Award. His impactful, application-driven research in mechanical and aerospace materials, proven leadership in national-level projects, and consistent scholarly output reflect a researcher of high caliber. His achievements demonstrate not only innovation but also real-world relevance, positioning him as an emerging leader in mechanical engineering research.

🎓Education:

Peng Zhang obtained his Doctorate in Aerospace Manufacturing Engineering from Nanjing University of Aeronautics and Astronautics, a leading institution in aerospace innovation in China. His academic training focused on advanced forming technologies, metal processing, and material behavior under extreme conditions, equipping him with deep theoretical insight and practical expertise in mechanical and materials engineering. Prior to his doctoral studies, he completed his undergraduate and master’s degrees in mechanical engineering-related disciplines, building a strong foundation in mechanical design, thermal sciences, and manufacturing techniques. His academic career has emphasized applied research with industry relevance, particularly in the area of metal forming, alloy development, and surface coating technologies. His educational background bridges the gap between academic excellence and industrial application, preparing him to mentor students effectively and conduct high-impact research.

🏢Work Experience:

Peng Zhang began his career as a technician in a military aircraft assembly plant, gaining hands-on exposure to the complexities of aerospace-grade manufacturing. This experience fueled his academic pursuit in aerospace manufacturing, culminating in a doctorate and current role as a tutor and researcher at Anhui University of Technology. He is actively involved in several ongoing and completed research projects related to hot forming, high-cycle fatigue resistance, cryogenic steel processing, and optoelectronic service monitoring systems. As the principal investigator on multiple projects, he has successfully combined theoretical knowledge with practical engineering to improve industrial forming precision and product performance. He brings both technical depth and instructional experience, as demonstrated by his recognition as an “Excellent Instructor” in two consecutive academic years. His work straddles both teaching and research, enriching the academic environment and contributing to industrial advancements.

🏅Awards: 

Peng Zhang has been recognized for his academic and instructional excellence, receiving the “Excellent Instructor” award in the 2022–2023 and 2023–2024 academic years at Anhui University of Technology. These honors reflect his commitment to mentorship, student development, and pedagogical excellence. His research achievements, including more than 10 SCI publications, 2 invention patents, and a software copyright, showcase his innovative contributions to material forming and failure behavior. As a project leader, he has consistently secured funding for advanced research in hot forming technologies, high-precision alloy treatment, and optoelectronic monitoring systems. His awards validate both his teaching capabilities and research leadership, marking him as a rising figure in the mechanical and aerospace materials domain. He is highly regarded by peers and students alike, and his work continues to have a meaningful impact both within the university and in applied engineering industries.

🔬Research Focus:

Peng Zhang’s research focuses on high-performance precision forming of light alloys such as aluminum-lithium (Al-Li) alloys, which are widely used in aerospace applications. He specializes in synchronous quenching hot forming—a novel approach that simultaneously enhances forming accuracy and mechanical performance. His work also delves into the high-cycle fatigue resistance and service failure behavior of advanced alloys, essential for structural integrity in aviation. Additionally, Peng is exploring surface engineering, including superhydrophobic protective coatings for aviation alloys, aiming to improve corrosion resistance and durability. His ongoing projects include studies on cryogenic steel head forming, optoelectronic real-time monitoring systems, and electrically assisted forming technologies, positioning him at the cutting-edge intersection of materials science, mechanical design, and industrial application. Through his integrative research, he contributes significantly to advancements in next-generation manufacturing processes and smart engineering systems.

Publication Top Notes:

1.Title: Effect of the Hot Forming with the Synchronous Quenching Process on Forming Accuracy and Microstructure of the 2A97 Al-Li Alloy
Authors: Peng Zhang, Anqiang Zhu, Yuchuan Lei, Huiting Wang, Benqi Jiao
2.Title: Effect of the Hot Forming with Synchronous Quenching Process on High Cycle Fatigue Properties of the 2A97 Al-Li Alloy
Authors: Peng Zhang, Anqiang Zhu, Huiting Wang, Qifeng Niu, Jiangtao Qi
Citations: 5 (as of May 2025)

Assoc. Prof. Dr. Mohamed Ebrahim | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Mohamed Ebrahim | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Mohamed Ebrahim | Materials Chemistry |Solid State Physics research at National Research Center, Egypt

M. R. Ebrahim, born in Giza, Egypt, is a distinguished researcher in solid-state physics at the National Research Centre (NRC), Egypt. He obtained his Ph.D. in Experimental Physics from Mansoura University, specializing in the synthesis and preparation of Al/Ru bi-layers. His expertise lies in severe plastic deformation (SPD) and surface mechanical alloying (SMA) of aluminum. He has significantly contributed to materials science with innovations such as Surface Mechanical Attrition Treatment (SMAT), for which he holds a patent. His research has advanced aluminum composites, corrosion resistance, and electrochemical behavior, leading to applications in supercapacitors, coatings, and energy storage devices. He has authored numerous publications in high-impact journals and collaborates internationally in materials engineering. His work integrates theoretical physics with experimental applications, contributing significantly to nanomaterials, electrochemistry, and advanced materials.

Professional Profile :         

Orcid

Scope  

Summary of Suitability for Award:

M. R. Ebrahim is a highly accomplished researcher specializing in solid-state physics, severe plastic deformation (SPD), and surface mechanical alloying (SMA). His groundbreaking innovations, such as Surface Mechanical Attrition Treatment (SMAT), have significantly advanced materials science, particularly in supercapacitor development, corrosion resistance, and electrochemical behavior. His patents, numerous high-impact publications, and contributions to industrial and academic research demonstrate his expertise and leadership in his field. He has successfully bridged the gap between theoretical physics and applied materials engineering, leading to practical advancements in nanomaterials and surface engineering. His active involvement in research collaborations, peer reviewing, and international conferences further strengthens his candidacy for this prestigious award. M. R. Ebrahim’s research excellence, technological innovations, and impactful contributions to materials science make him a highly deserving candidate for the “Best Researcher Award.” His patents, publications, and pioneering work in surface engineering and electrochemistry showcase his ability to drive scientific progress and innovation. Recognizing his achievements would honor his dedication to advancing materials science and inspire further groundbreaking research in the field.

🎓Education:

M. R. Ebrahim pursued his academic journey in physics, starting with a B.Sc. in Physics from Helwan University, Egypt. He furthered his studies with a Ph.D. in Experimental Physics from Mansoura University, focusing on synthesis and preparation of Al/Ru bi-layers. His doctoral research emphasized surface modifications, mechanical alloying, and electrochemical properties of aluminum-based materials. His educational background laid a strong foundation for his work in severe plastic deformation (SPD), surface engineering, and supercapacitor technology. His studies encompassed various aspects of solid-state physics, nanomaterials, and electrochemical behavior. With extensive laboratory experience, he gained expertise in materials characterization, thin-film coatings, and corrosion-resistant materials. His education has driven his innovations in advanced materials processing, mechanical attrition, and novel composite development, enabling him to make significant contributions to materials science and industrial applications.

🏢Work Experience:

M. R. Ebrahim has been a Researcher in Solid-State Physics at NRC, Egypt, since 2010, working extensively on surface mechanical alloying, corrosion resistance, and severe plastic deformation of aluminum-based materials. His research focuses on enhancing the mechanical, electrical, and electrochemical properties of metals for various applications. He pioneered SMAT technology for material surface modifications, significantly improving supercapacitor performance, dielectric properties, and composite coatings. His collaborations extend internationally, engaging in projects related to nano-coatings, energy storage, and metal reinforcement techniques. He has contributed to industrial advancements by integrating electrochemical engineering with material science, leading to innovative solutions for corrosion-resistant and high-performance aluminum materials. He actively publishes, reviews scientific papers, and participates in global conferences, sharing his expertise in materials modification, nanostructured composites, and energy applications. His work bridges the gap between fundamental physics and practical material applications, driving progress in advanced alloy engineering.

🏅Awards: 

M. R. Ebrahim has received several prestigious recognitions for his outstanding contributions to solid-state physics, surface mechanical alloying, and severe plastic deformation. He has been acknowledged for his innovative patents, including the “Machine for Surface Mechanical Attrition Treatment (SMAT)” and “Supercapacitors Construction from Fiberglass through Surface Mechanical Alloying.” These innovations were recognized by the Egyptian Scientific Research Academy, highlighting their significance in advancing materials science and energy storage technologies. His research excellence has also earned him invitations to international conferences, peer-reviewing roles in high-impact journals, and collaborations with leading institutions. His contributions to corrosion resistance, electrochemical behavior, and composite materials have been widely cited, further solidifying his reputation as a leading researcher in his field. His dedication to applied physics and engineering continues to influence modern materials science, making him a strong contender for prestigious scientific awards and fellowships.

🔬Research Focus:

M. R. Ebrahim’s research is centered on solid-state physics, surface engineering, and severe plastic deformation (SPD) to enhance material properties. His work on surface mechanical alloying (SMA) and surface mechanical attrition treatment (SMAT) has led to significant advancements in corrosion resistance, mechanical strength, and electrical properties of aluminum-based materials. A key aspect of his research is the development of supercapacitors using fiberglass and aluminum composites, which has implications for energy storage and electronic applications. His studies also explore electrochemical behavior, dielectric permittivity, and microstructural evolution in materials subjected to mechanical treatments. By integrating experimental physics with material science, he has successfully introduced innovative methodologies to modify and enhance material surfaces for industrial and technological applications. His contributions are particularly impactful in nanomaterials, thin films, and composite materials, where his work continues to drive new advancements in materials engineering and applied physics.

Publication Top Notes:

  • “Electrical properties of Al-Si surface composites through surface mechanical alloying on severe plastic deformed Al substrates”

  • “Mechanical treatment of aluminum plate surfaces for improvements of capacitance and dielectric permittivity”

  • “Corrosion behavior of aluminum-Fiber Glass composite fabricated through surface mechanical alloying in alkaline media”

  • “Electrochemical behavior of Al₂O₃/Al composite coated Al electrodes through surface mechanical alloying in alkaline media”

  • “Terahertz acoustic phonon detection from a compact surface layer of spherical nanoparticles powder mixture of aluminum, alumina and multi-walled carbon nanotube”

  • “Improving corrosion resistance of Al through severe plastic deformation 1-under free condition”

  • “Improving corrosion resistance of Al through severe plastic deformation 2-under accelerated condition”

  • “Spectroscopic Analysis of Severe Plastically Deformed Raw Al Rolled Sheet”

  • “Microstructure and Microhardness Evolutions of High Fe Containing Near-Eutectic Al-Si Rapidly Solidified Alloy”

  • “Microstructure and microhardness evolution of melt-spun Al-Si-Cu alloy”

  • “Study of Phase Evolution in Sputtered Al/Ru Bi-layers Nanocrystalline Thin Films”

 

Assoc. Prof. Dr. Olcay Gençyılmaz | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Olcay Gençyılmaz | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Olcay Gençyılmaz , Çankırı Karatekin University, Turkey

Olcay Gençyılmaz is a prominent academic and researcher at Çankırı Karatekin University, specializing in materials science and nanotechnology. With expertise in thin film production, electrochemical applications, and photovoltaic systems, She has led multiple national research projects and contributed to the development of advanced materials for various applications. Throughout his career, She has worked on numerous interdisciplinary projects, exploring the effects of nanomaterials on environmental sustainability, energy production, and health. As a dedicated educator, he actively engages in mentoring graduate and doctoral students, guiding them in their research endeavors. His work is widely recognized in the scientific community, and he has published extensively in international journals.

Professional Profile:

Scopus  

Summary of Suitability for Award:

Olcay Gençyılmaz is highly qualified for the “Best Researcher Award” due to his outstanding contributions in the field of materials science and nanotechnology. His extensive research on thin films, nanomaterials, and their applications in energy systems, environmental sustainability, and healthcare has positioned him as a leading figure in his field. His work on the development of innovative materials for photovoltaics, electrochemical energy storage, and environmental remediation demonstrates his commitment to solving global challenges. His academic achievements, leadership in research projects, and numerous high-quality publications underscore his excellence in research and innovation, which are key criteria for this prestigious recognition.

🎓Education:

Olcay Gençyılmaz holds a Bachelor’s degree in Physics and a Master’s degree in Materials Science. He earned his Ph.D. in Nanotechnology from Çankırı Karatekin University, Turkey. His educational journey was marked by a focus on developing thin films for applications in energy and electronics. She participated in numerous academic workshops and research collaborations, enhancing his understanding of advanced materials and their characterization. Olcay’s education laid the foundation for his career, enabling him to contribute to the scientific community with cutting-edge research.

🏢Work Experience:

Olcay Gençyılmaz’s professional experience spans both academia and research. As an Associate Professor at Çankırı Karatekin University, She has supervised numerous research projects and mentored graduate students. His academic expertise includes thin film characterization, nanomaterials, and energy systems. Olcay has been involved in multiple national research projects related to photovoltaic systems, electrochemical capacitors, and thin film production techniques like SILAR and spray pyrolysis. She has served as a project leader and executive board member, contributing to advancements in materials science and nanotechnology.

🏅Awards: 

Olcay Gençyılmaz has received several prestigious awards throughout his career. Notably, She was recognized by TÜBİTAK for his work on the synthesis and characterization of CuO films. His research on thin films, particularly for solar cells and energy storage, She has earned him national recognition. Olcay’s contributions to material science and nanotechnology have been pivotal in advancing these fields. His passion for research and innovation continues to inspire students and colleagues alike.

🔬Research Focus:

Olcay Gençyılmaz’s research primarily focuses on materials science, particularly thin films and nanomaterials. His work explores the production, characterization, and application of thin films for various technological fields such as photovoltaics, electrochemical energy storage, and environmental remediation. Olcay is also interested in the synthesis of nanoparticles for antibacterial and photocatalytic applications. His innovative research aims to develop sustainable materials that can address energy and environmental challenges.

Publication Top Notes:

1. Analyzing antimicrobial activity of ZnO/FTO, Sn–Cu-doped ZnO/FTO thin films: Production and characterizations
  • Citations: 1
2. Comparison of high antioxidant ZnO NPs produced from different fungi as alternative biomaterials
3. Comparative evaluation of zinc oxide nanoparticles (ZnONPs): Photocatalysis, antibacterial, toxicity and genotoxicity
  • Citations: 1
4. Spray pyrolysis–derived V₂O₅ thin films as an alternative electrochromic layer for electrochromic devices
5. Binary ZnS–ZnO films as an alternative buffer layer for solar cell applications
  • Citations: 2