Dr. Vemula Madhavi | Environmental Chemistry | Women Researcher Award

Dr. Vemula Madhavi | Environmental Chemistry | Women Researcher Award

Dr. Vemula Madhavi , Environmental Chemistry , Assistant Professor at BVRIT HYDERABAD College of Engineering for Women, India

Dr. S. Madhavi V is an accomplished chemist with a Ph.D. from Sri Venkateswara University, Tirupati, India. She has cultivated a solid academic and research career focused on nanomaterials, environmental remediation, and analytical chemistry. Currently serving as an Assistant Professor at BVRIT Hyderabad, Dr. Madhavi brings more than 15 years of teaching and research experience. Her work includes a granted Indian patent and multiple high-impact publications in reputed journals. She has also secured funding for research under TEQIP-III, JNTUH. With an h-index of 11 and over 500 citations, her contributions to green synthesis and environmental nanotechnology are widely recognized. A passionate educator and innovator, she continually strives to bridge the gap between research and societal application, especially in the field of water purification using sustainable materials.

Professional Profile : 

Google Scholar

Orcid 

Scopus 

Summary of Suitability for Award:

Dr. S. Madhavi V is highly suitable for the “Women Researcher Award” due to her significant and sustained contributions to the field of chemistry, particularly in nanotechnology and environmental applications. She has over 15 years of combined research and teaching experience, a granted Indian patent on sustainable water purification using graphene oxide from rice husk, and a funded research project under TEQIP-III on green nanomaterials for wastewater treatment. Her scholarly impact includes 540+ citations, h-index of 11, and 12+ research publications in high-impact journals spanning areas such as nanocomposites, MOFs, biomarker sensors, and agricultural nanotechnology. She integrates innovative eco-friendly methodologies in her work and demonstrates leadership as an academic and researcher. Dr. Madhavi has also contributed to science education through multiple academic positions, helping foster the next generation of chemists. Dr. S. Madhavi V embodies the spirit and excellence celebrated by the “Women Researcher Award”. Her impactful research, interdisciplinary approach, and commitment to sustainable science position her as a leading woman in the chemical sciences. Her achievements in patenting, publishing, and funded research underscore her excellence and innovation. She is not only an accomplished scientist but also a role model for aspiring women researchers in India and beyond.

🎓Education:

Dr. Madhavi V pursued her academic journey at Sri Venkateswara University, Tirupati, where she earned her Ph.D. in Chemistry in 2014. Her research was grounded in environmental and materials chemistry, focusing on the synthesis and application of nanomaterials for remediation. She holds an M.Sc. in Chemistry (2008) with a stellar score of 78.9%, and a B.Sc. in Mathematics, Physics, and Chemistry (2006) with an impressive 84%. Her earlier education includes Intermediate (2003) with 90% and SSC (2001) with 88%, showcasing consistent academic excellence throughout. These solid foundations in science and mathematics equipped her with critical analytical skills, enabling her to explore interdisciplinary challenges across chemistry and environmental science. Her academic progression reflects a deep commitment to learning, teaching, and developing sustainable scientific innovations.

🏢Work Experience:

Dr. Madhavi V began her academic career as an Academic Consultant in Chemistry at Yogi Vemana University (2008–2009). She then served as an Assistant Professor at Annamacharya Engineering College, Tirupati (2009–2010), and a Teaching Assistant at S.V. University (2010–2013). Her pedagogical contributions continued at CMRIT, Hyderabad (2013–2014), before joining BVRITH Hyderabad in 2014, where she continues to inspire students. Over 15 years, she has demonstrated excellence in curriculum delivery, research supervision, and innovation-driven education. Her interdisciplinary teaching spans general chemistry, environmental science, nanotechnology, and green chemistry. She has also guided students in research-based learning, integrating academic content with practical applications. Her teaching is marked by a commitment to quality education, fostering critical thinking and sustainable innovation among learners.

🏅Awards: 

Dr. S. Madhavi V has received several honors that underscore her excellence in research and innovation. Notably, she was granted an Indian patent (No. 410482) for her invention titled “Pretreated Rice Husk for Sustainable Graphene Oxide for Adsorptive Removal of Chromium from Water”, which highlights her commitment to sustainable environmental solutions. She also secured a funded research grant under the TEQIP-III collaborative scheme (JNTUH, 2019) for her project focused on synthesizing graphene from agricultural waste for the remediation of heavy metals in wastewater. Her scholarly impact is evidenced by a Google Scholar h-index of 11, i10 index of 11, and over 540 citations, recognizing her influential contributions to nanochemistry and environmental science. She is listed on major research platforms including Scopus, ORCID, and Google Scholar, which reflects her active engagement with the global scientific community. These accolades mark her as a distinguished and impactful woman researcher in the chemical sciences.

🔬Research Focus:

Dr. Madhavi V’s research is centered on green synthesis of nanomaterials, graphene production from biomass, and removal of heavy metals and dyes from wastewater using low-cost adsorbents. Her studies explore the eco-friendly conversion of agricultural waste into high-efficiency nanomaterials, with a focus on water remediation. She is deeply invested in adsorptive technologies, biomass-derived graphene, metal-organic frameworks (MOFs), and environmental sensors. Her work also extends to computational docking of metal complexes, magnetic and optical characterization of ferrites, and controlled release formulations for agricultural sustainability. By integrating sustainable materials science, environmental protection, and analytical techniques, her research contributes significantly to green chemistry and nanotechnology. With a strong inclination toward applications with social and environmental impact, Dr. Madhavi is a dedicated advocate for translating lab-scale innovations into real-world solutions.

Publication Top Notes:

1. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium

Citations: 221

2. An overview on research trends in remediation of chromium

Citations: 94

3. Remediation of chlorpyrifos-contaminated soils by laboratory-synthesized zero-valent nano iron particles: effect of pH and aluminium salts

Citations: 75

4. Synthesis and spectral characterization of iron-based micro and nanoparticles

Citations: 54

5. Chapter 8 – Recent improvements in the extraction, cleanup and quantification of bioactive flavonoids

Citations: 47

6. A selective and sensitive UPLC–MS/MS approach for trace level quantification of four potential genotoxic impurities in zolmitriptan drug substance

Citations: 36

7. Electrochemical investigations of lipase enzyme activity inhibition by methyl parathion pesticide: voltammetric studies

Citations: 33

8. Conjunctive effect of CMC–zero-valent iron nanoparticles and FYM in the remediation of chromium-contaminated soils

Citations: 30

9. Method development and validation study for quantitative determination of 2-chloromethyl-3,4-dimethoxy pyridine hydrochloride a genotoxic impurity in pantoprazole active …

Citations: 26

10. Liquid chromatography–tandem mass spectrometry method for simultaneous quantification of urapidil and aripiprazole in human plasma and its application to human pharmacokinetic …

Citations: 22

 

Dr. Yan Xue | Environmental Chemistry | Sustainable Chemistry Award

Dr. Yan Xue | Environmental Chemistry | Sustainable Chemistry Award

Dr. Yan Xue , Nanjing Agricultural University , China

Dr. Yan Xue is a researcher at Nanjing Agricultural University, specializing in environmental nanomaterials. His research focuses on the high-value utilization of green composite nanomaterials derived from modified graphene/graphene-like biochar-based materials. Dr. Xue explores real-time environmental monitoring, remediation of complex environmental conditions, and the development of energy storage devices such as supercapacitors and ionic batteries. His work aligns with global sustainability goals, emphasizing waste-to-waste treatment strategies and eco-friendly material applications. He has contributed significantly to the fields of electrocatalysis, intelligent energy management, and lignocellulose conversion, publishing multiple high-impact research papers.

Professional Profile : 

Orcid

Summary of Suitability for Award:

Dr. Yan Xue is an exceptional candidate for the “Sustainable Chemistry Award” due to his pioneering research in environmental nanomaterials and green chemistry applications. His work focuses on the high-value utilization of biomass-derived functional materials, aligning perfectly with the principles of sustainability, circular economy, and green chemistry. He has contributed significantly to waste-to-waste treatment strategies, converting agricultural and industrial biomass into high-performance materials for environmental remediation, electrochemical sensing, and energy storage applications. His research also supports carbon neutrality and sustainable energy solutions, making a strong impact on global environmental goals. Dr. Yan Xue’s contributions to sustainable chemistry, nanotechnology, and green energy solutions demonstrate scientific excellence and real-world impact. His research addresses critical environmental challenges through eco-friendly material synthesis, pollutant remediation, and sustainable energy storage. Given his innovative approach, interdisciplinary expertise, and commitment to green chemistry, he is a highly suitable candidate for the “Sustainable Chemistry Award”.

🎓Education:

Dr. Yan Xue pursued his academic journey with a strong focus on environmental sciences and materials chemistry. He obtained his doctoral degree from Nanjing Agricultural University, where he specialized in graphene-based biochar nanomaterials. His education was rooted in green chemistry, electrochemical energy storage, and sustainable material applications. His thesis emphasized the modification of biochar-derived nanomaterials for enhanced environmental performance and energy conversion efficiency. With a deep interest in sustainable chemistry and intelligent energy systems, Dr. Xue’s academic training laid a solid foundation for his ongoing research in eco-friendly functional materials.

🏢Work Experience:

Dr. Yan Xue has extensive research experience in high-value biomass utilization, electrocatalysis, and green energy applications. His expertise includes preparing and functionalizing graphene-based nanomaterials for energy storage and environmental monitoring. He has worked on tunable biochar modifications for real-time sensing and remediation of pollutants. Additionally, Dr. Xue has contributed to the development of bio-based energy devices, including supercapacitors and ionic batteries. His interdisciplinary approach integrates materials chemistry, nanotechnology, and environmental sciences to develop innovative solutions for sustainable energy and pollution control.

🏅Awards: 

Dr. Yan Xue has been recognized for his contributions to green materials research and environmental nanotechnology. His work in waste-derived nanomaterials has received accolades in academic and industrial settings. He has been cited in high-impact journals, reflecting his significant contributions to sustainable chemistry and advanced materials. His research in biochar-based nanomaterials has positioned him among emerging leaders in eco-friendly energy storage solutions.

🔬Research Focus:

Dr. Yan Xue’s research primarily focuses on environmental nanomaterials, emphasizing the high-value utilization of biomass-derived functional materials for sustainable applications. His work explores the synthesis, modification, and application of graphene/graphene-like biochar-based nanomaterials to address critical environmental challenges. He specializes in the development of advanced electrochemical sensors, pollutant remediation systems, and green energy storage solutions, integrating principles of electrocatalysis, intelligent energy management, and nanotechnology. Dr. Xue is particularly interested in waste-to-waste treatment strategies, converting agricultural and industrial biomass into high-performance nanomaterials for supercapacitors, ionic batteries, and pollutant detection systems. His research also extends to functional nanocomposites, such as metallic-like boron-doped biochar, porphyrin-modified nanocatalysts, and hybrid carbon nanostructures, for enhanced electrocatalytic performance and environmental sensing. By merging materials chemistry, environmental science, and nanotechnology, Dr. Xue contributes to the development of eco-friendly, cost-effective, and scalable solutions for sustainable energy and pollution control.

Publication Top Notes:

Enhancing capacitive performance through solvent-coupled two-step carbonization of cotton stalk biochar with tunable melamine doping: Deciphering the redox activity of pyrrolic nitrogen

Authors: Yan Xue, [Additional authors not specified]

Journal: International Journal of Hydrogen Energy

Publication Date: March 2025

DOI: 10.1016/j.ijhydene.2025.02.057

New insights into temperature-induced mechanisms of copper adsorption enhancement on hydroxyapatite-in situ self-doped fluffy bread-like biochar

Authors: Yan Xue, [Additional authors not specified]

Journal: Chemical Engineering Journal

Publication Date: January 2024

DOI: 10.1016/j.cej.2023.147657

Efficiently catalytic degradation of tetracycline via persulfate activation with plant-based biochars: Insight into endogenous mineral self-template effect and pyrolysis catalysis

Authors: Yan Xue, [Additional authors not specified]

Journal: Chemosphere

Publication Date: October 2023

DOI: 10.1016/j.chemosphere.2023.139309

Metallic-like boron-modified bio-carbon electrodes for simultaneous electroanalysis for Cd²⁺, Pb²⁺ and Cu²⁺: Theoretical insight into the role of CxBOy(H)

Authors: Yan Xue, [Additional authors not specified]

Journal: Carbon

Publication Date: October 2023

DOI: 10.1016/j.carbon.2023.118350

Highly selective colorimetric platinum nanoparticle-modified core-shell molybdenum disulfide/silica platform for selectively detecting hydroquinone

Authors: Yan Xue, [Additional authors not specified]

Journal: Advanced Composites and Hybrid Materials

Publication Date: August 2023

DOI: 10.1007/s42114-023-00719-z

Pt deposited on sea urchin-like CuCo₂O₄ nanowires: Preparation, the excellent peroxidase-like activity and the colorimetric detection of sulfide ions

Authors: Yan Xue, [Additional authors not specified]

Journal: Journal of Environmental Chemical Engineering

Publication Date: April 2022

DOI: 10.1016/j.jece.2022.107228

Porphyrin-Modified NiS₂ Nanoparticles Anchored on Graphene for the Specific Determination of Cholesterol

Authors: Yan Xue, [Additional authors not specified]

Journal: ACS Applied Nano Materials

Publication Date: November 26, 2021

DOI: 10.1021/acsanm.1c02318

V₂O₅-montmorillonite nanocomposites of peroxidase-like activity and their application in the detection of H₂O₂ and glutathione

Authors: Yan Xue, [Additional authors not specified]

Journal: Applied Clay Science

Publication Date: September 2020

DOI: 10.1016/j.clay.2020.105718