Dr. Abdul Abdul , Nanotechnology , Associate Prof at Quanzhou University of Information Engineering, China
Dr. M. Abdul is an experimental physicist specializing in quantum many-body systems using ultracold atoms and quantum gases. He earned his Ph.D. from the University of Science and Technology of China, focusing on Boson Sampling schemes in optical lattices. Dr. Abdul has worked as an Assistant Professor at Sichuan University and is currently a full-time researcher at the University of Electronic Science and Technology of China. His research spans quantum optics, nonlinear optics, ultracold quantum gases, and high-resolution imaging. Dr. Abdul is highly skilled in developing ultrahigh vacuum systems, homemade lasers, and advanced imaging setups. With a resilient, positive, and hardworking personality, he has contributed to multiple research projects, applied for two patents, and published extensively in top journals. Fluent in English and beginner-level Chinese, Dr. Abdul embodies a cooperative spirit in scientific innovation and collaboration.
Professional Profile :
Orcid
Scopus
Summary of Suitability for Award:
Dr. M. Abdul is a dynamic and accomplished experimental physicist with a strong academic and research background in quantum optics, ultracold atomic systems, quantum simulation, and nonlinear optics. His research interests lie at the cutting edge of modern quantum physics, particularly in Boson sampling, high-resolution optical lattices, and superlattice-based quantum simulations. His career reflects a consistent and impactful contribution to both theoretical modeling and experimental implementation in advanced photonics and quantum technologies. Dr. M. Abdul is a highly deserving candidate for the “Best Researcher Award”. His research profile is marked by academic rigor, technical innovation, and interdisciplinary reach. With an impressive record of publications, international collaborations, and pioneering work in quantum systems and optics, he stands out as a leader among early- to mid-career researchers. His contributions not only advance fundamental science but also open new avenues for applications in quantum technologies and material science.
🎓Education:
Dr. M. Abdul pursued his Ph.D. in Physics at the University of Science and Technology of China (2014–2018), focusing on Boson Sampling with ultracold atoms. He completed his M.Phil. in Electronics from Quaid-I-Azam University Islamabad (2009–2011), achieving top national ranking, and earned an M.Sc. in Physics specializing in Electronics from Bahauddin Zakariya University, Multan (2006–2008). His undergraduate B.Sc. degree in Physics and Mathematics was also obtained from Bahauddin Zakariya University (2003–2006). Currently, he is serving as a full-time researcher at the University of Electronic Science and Technology of China (2022–2025). His academic journey reflects a consistent focus on quantum physics, electronic systems, and ultracold atomic research. He has also undertaken specialized training in laser systems, optical lattices, and computational physics tools, equipping him with deep experimental and theoretical proficiencies in modern quantum technologies.
🏢Work Experience:
Dr. M. Abdul has held several prestigious academic and teaching positions. From December 2018 to March 2022, he served as an Assistant Professor at Sichuan University, College of Physics, where he worked on optical lattices and ultracold atoms. Since May 2022, he has been a full-time researcher at the University of Electronic Science and Technology of China. Earlier in his career, he taught Physics and Mathematics at Down High School, Punjab Group of Colleges, and St. Mary College in Rawalpindi, developing a strong foundation in educational leadership and student mentorship. He also contributed to various national-level research projects in Pakistan, including studies on nonlinear atomic dynamics and nano-devices. His diverse professional experience combines experimental physics research, teaching, and development of advanced laboratory setups like vacuum systems, lasers, and imaging systems, establishing him as a multifaceted expert in quantum technologies.
🏅Awards:
Dr. M. Abdul has achieved significant recognition throughout his academic career. He secured the first rank in his M.Phil. program at Quaid-I-Azam University, Islamabad. During his Ph.D. tenure, he contributed to several funded national and international research projects, such as those supported by the National Higher Education Commission of Pakistan and the National Science Foundation of China (NSFC). He has applied for two patents related to laser and optical technologies. His research presentations at major international conferences, including QCMC 2014 (China) and CHAOS2018, reflect his growing influence in quantum physics and nonlinear dynamics communities. Invitations to submit in top-tier journals such as Applied Physics Reviews and contributions to organizing international conferences on nanoscience further mark his career. His awards and project leadership roles highlight his excellence, innovation, and dedication to advancing the field of quantum optics and ultracold atom systems.
🔬Research Focus:
Dr. M. Abdul’s research primarily centers on quantum simulation, quantum optics, ultracold quantum gases, and many-body quantum systems. His doctoral work explored Boson Sampling schemes using ultracold atoms in optical lattices. He has since expanded his expertise into high-resolution imaging using superlattices and nonlinear optics with a focus on cavity-based laser systems. His work involves developing ultrahigh vacuum systems, laser stabilization circuits, and DMD-based imaging technologies. He is also engaged in first-principles studies of optical, electronic, and thermoelectric properties of novel perovskite materials. Dr. Abdul’s projects aim to realize quantum metamaterials and quantum memory devices, critical for future quantum technologies. His current focus includes creating spatially entangled bosonic systems, manipulating surface plasmon polaritons, and engineering ultracold atoms for Hong-Ou-Mandel interference experiments. His interdisciplinary approach bridges theoretical modeling with advanced experimental setups, contributing to the next-generation quantum simulation platforms.
Publication Top Notes:
1. Synergistic Improvement of OER/HER Electrocatalytic Performance of Cu₂Te via the Introduction of Zr for Water Electrolysis
2. Facile Synthesis of Co₃Te₄–Fe₃C for Efficient Overall Water-Splitting in an Alkaline Medium
3. Manipulation of Surface Plasmon Polariton Fields Excitation at Quantum-Size Slit in a Dielectric and Graphene Interface
4. Exploring the Properties of Zr₂CO₂/GaS van der Waals Heterostructures for Optoelectronic Applications
5. Effects of Thermal Fluctuation When an Optical Cavity Possesses Neutral Atoms and a Two-Mode Laser System
6. Synchronized Attractors and Phase Entrained with Cavity Loss of the Coupled Laser’s Map