Prof. Mansoor Anbia | Analytical Chemistry | Best Researcher Award

Prof. Mansoor Anbia | Analytical Chemistry | Best Researcher Award

Prof. Mansoor Anbia ,  Analytical Chemistry , Academician/Research Scholar at Iran university od science and technology , Iran

Prof. Mansoor Anbia is a distinguished Professor of Analytical Chemistry at the Iran University of Science and Technology. He specializes in the synthesis and application of nanomaterials, particularly for environmental monitoring and catalysis. With a Ph.D. in Analytical Chemistry, Prof. Anbia has led 365 research projects, published 249 articles in reputed journals, authored five books, and contributed significantly to industrial consultancy with over 70 projects. His editorial appointments include the Journal of Chemical Reviews and the Asian Journal of Nanoscience and Materials. As president of international chemistry congresses and head of various national committees, he bridges academia and industry with a commitment to applied innovation. Prof. Anbia’s pioneering work on nanostructured materials has gained global recognition, earning him an h-index of 38. Through his research and leadership, he continues to advance scientific understanding and real-world application in nanochemistry and analytical science.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Mansoor Anbia stands out as an exceptionally qualified candidate for the Best Researcher Award due to his prolific academic contributions, innovative research, and leadership in scientific and industrial domains. With 249 publications in high-impact journals, 365 completed or ongoing research projects, and five authored books, his scholarly output is not only vast but also highly influential, evidenced by his citation index (h-index) of 38.  Additionally, Prof. Anbia has bridged academia and industry through 71 consultancy projects and multiple prestigious appointments, including editorial board roles, presidency of international congresses, and national scientific advisory positions. His consistent leadership in national science policy, industrial applications, and interdisciplinary collaborations positions him as a role model for emerging researchers. Prof. Mansoor Anbia is highly suitable for the “Best Researcher Award”. His pioneering work in nanochemistry and analytical science, combined with extensive scholarly output and industrial impact, exemplifies the highest standards of research excellence. He fulfills all major criteria—productivity, innovation, societal relevance, and academic leadership—and thus represents an ideal recipient of this distinguished honor.

🎓Education:

Prof. Mansoor Anbia holds a Ph.D. in Analytical Chemistry with a specialization in nanomaterials. During his doctoral studies, he conducted advanced research on nanostructures and their applications in analytical techniques. He worked closely with a renowned expert in nanotechnology, gaining interdisciplinary expertise across materials science, instrumental analysis, and catalysis. His academic journey focused on developing methods for environmental monitoring, pollutant removal, and industrial process optimization. As a doctoral researcher, he published extensively and served as first author in many high-impact journals. His academic training provided a robust foundation in research design, experimental techniques, and scientific communication. His education also equipped him with advanced skills in synthesis, characterization, and application of porous nanomaterials, shaping his long-term research directions. Prof. Anbia’s academic background remains integral to his ongoing success as a scholar, mentor, and innovator in the field of nanoscience and analytical chemistry.

🏢Work Experience:

Prof. Mansoor Anbia brings decades of experience in academia, industrial consultancy, and scientific leadership. As a Professor of Analytical Chemistry at the Iran University of Science and Technology, he has supervised numerous Ph.D. scholars and led 365 completed or ongoing research projects. With 71 consultancy and industrial collaborations, he has contributed extensively to environmental and industrial applications of nanomaterials. His responsibilities span teaching, research, innovation, and international cooperation. Prof. Anbia also serves in leadership roles: Director of the Oil Industry Relations Office, Head of the Center for Silicon Chemistry Technology, and Chair of national research committees. His editorial involvement and presidency of international congresses further reflect his global engagement. Across his career, he has integrated scientific rigor with practical innovation, contributing significantly to environmental remediation, catalysis, and industrial processes. His career exemplifies a synergy of academic excellence and applied science.

🏅Awards: 

Prof. Mansoor Anbia’s exceptional career has earned him several accolades and prestigious appointments. He is the President of the International Congress of Chemistry and Nanochemistry, reflecting his global stature. He has been a key member of multiple national scientific boards including the Specialized Commission on Basic Sciences, and the Iranian Water and Wastewater Industry Book Review Committee. Prof. Anbia has played a pivotal role in government and industrial policy through his position on the Research Committee of the Iranian Water Resources Management Technology Company. As Head of the Center for Coordination of Silicon and Organosilicon Chemistry Technology, his contributions are widely acknowledged in both academic and industrial circles. These honors affirm his impact on science policy, education, and real-world problem solving. Through his dedication to scientific excellence and interdisciplinary innovation, he continues to influence the future of analytical chemistry and nanotechnology.

🔬Research Focus:

Prof. Mansoor Anbia’s research centers on the synthesis and application of nanostructured and nanoporous materials for environmental and industrial uses. He focuses on developing novel adsorbents and catalysts with enhanced efficiency for the removal of organic and inorganic pollutants from industrial effluents. His work also targets energy and environmental sustainability by engineering nano-based systems applicable in water treatment and industrial plants. He integrates advanced analytical techniques for characterization and performance evaluation of materials. Prof. Anbia’s studies span method development, instrumental analysis, and real-world application, particularly in the oil and petrochemical sectors. His collaborative efforts in interdisciplinary projects strengthen the link between chemistry, environmental science, and industrial engineering. Through innovations in functionalized nanomaterials, his research aims to solve pressing environmental issues while advancing the field of green and analytical chemistry.

Publication Top Notes:

1. Superhydrophobic magnetic melamine sponge modified by flowerlike ZnO and stearic acid using dip coating method for oil and water separation

2. Investigation of sol-gel derived organic-inorganic hybrid coatings based on commercial epoxy resin for improved corrosion resistance of 304 stainless steel

Citations: 1

3. Kinetic and isotherm studies of Cr(VI) adsorption from aqueous media by using a synthetic chitosan-allophane nanocomposite

4. Synergetic effect of heteroatoms doping and functional groups of graphene-chitosan magnetic nanocomposite on enhancement of heavy metal sorption

Citations: 1

5. Chitosan and carboxymethyl cellulose coated on NH₂-UiO-66 for levofloxacin delivery: A comparative study

6. MIL-101(Fe)- and MIL-101(Fe)-NH₂-loaded thin film nanofiltration membranes for removal of fluoxetine hydrochloride from pharmaceutical wastewater

Citations: 1

7. Investigating the catalytic performance of polyoxometalate immobilized on magnetic chitosan in oxidative desulfurization

Citations: 3

8. Modification of melamine and polyurethane sponges with vinyl triethoxysilane-graphene nanocomposite as superhydrophobic absorbents for oil-water separation

9. Machine learning-based prediction and experimental validation of Cr(VI) adsorption capacity of chitosan-based composites

10. Green synthesis of magnetic graphene-like biochar with oxygen vacancies for efficient adsorption and degradation of emerging antivirals from water

Citations: 4

 

Assoc. Prof. Dr. Saeed Mohammad Sorouraddin | Analytical Chemistry | Best Researcher Award

Assoc. Prof. Dr. Saeed Mohammad Sorouraddin | Analytical Chemistry | Best Researcher Award 

Assoc. Prof. Dr. Saeed Mohammad Sorouraddin , University of Tabriz , Iran 

Saeed Mohammad Sorouraddin Abadi is an Associate Professor in the Department of Analytical Chemistry at Tabriz University, specializing in analytical chemistry and microextraction techniques. With extensive experience in the field, he has contributed significantly to the development of extraction methods for trace elements and pollutants. His work includes innovative techniques in dispersive liquid-liquid microextraction, contributing to environmental monitoring, food safety, and industrial applications. He is widely recognized for his research in pesticide analysis, heavy metals detection, and the use of green chemistry in sample preparation. Saeed Mohammad Sorouraddin Abadi is a respected figure in his field, holding numerous publications in international journals and actively participating in academic research projects. His contributions to the scientific community have had a profound impact on environmental and food analysis.

Professional Profile:

Google Scholar   

Summary of Suitability for Award:

Saeed Mohammad Sorouraddin Abadi stands out as a deserving candidate for the “Best Researcher Award” , given his significant contributions to analytical chemistry, his innovative research, and his continued efforts to advance the field of microextraction techniques. His work not only furthers scientific knowledge but also has practical applications in environmental and food safety monitoring, demonstrating his impact on both academia and society. His work has focused on enhancing the sensitivity and efficiency of extraction processes, particularly in trace metal and pesticide analysis.

🎓Education:

Saeed Mohammad Sorouraddin Abadi holds a Ph.D. in Analytical Chemistry, where his research focused on novel extraction techniques and their application in environmental and food analysis. He completed his M.Sc. and B.Sc. in Chemistry, further refining his analytical skills and methods. His academic journey has been marked by a strong commitment to advancing scientific knowledge in the area of sample preparation techniques. Throughout his education, he specialized in developing environmentally friendly methods for extracting contaminants from complex matrices. Abadi’s work has become a cornerstone in the development of microextraction processes and their optimization for trace analysis of various elements.

🏢Work Experience:

With years of experience in the field of analytical chemistry, Saeed Mohammad Sorouraddin Abadi has made substantial contributions to both research and teaching. He has guided numerous students in their B.Sc., M.Sc., and Ph.D. studies, imparting his expertise in analytical techniques. Abadi’s research has focused on developing advanced microextraction methods such as dispersive liquid-liquid microextraction (DLLME), which have applications in various fields, including food safety, environmental monitoring, and industrial analysis. He has also worked extensively on improving analytical processes for detecting pesticides and heavy metals in complex samples. His teaching methodology integrates research with practical applications, equipping students with skills to innovate in the field of analytical chemistry.

🏅Awards:

Saeed Mohammad Sorouraddin Abadi has received multiple recognitions for his pioneering work in analytical chemistry. He has been awarded various academic honors for his contributions to the development of microextraction techniques, especially in the analysis of trace metals and pollutants. His publications are highly cited, underlining his global influence in the field of environmental and food analysis. Abadi’s innovative approach to using green chemistry in extraction processes has earned him accolades from professional chemistry organizations. His research has also received funding and support from several national and international research grants, recognizing his significant contributions to the advancement of analytical chemistry.

🔬Research Focus:

Saeed Mohammad Sorouraddin Abadi’s primary research focus lies in the development of novel microextraction techniques, specifically dispersive liquid-liquid microextraction (DLLME), for trace analysis of heavy metals, pesticides, and other contaminants. His work emphasizes environmentally friendly methods and the application of green chemistry in analytical processes. Abadi is particularly interested in the development of advanced sample preparation techniques for complex samples, such as food, water, and environmental matrices. His research aims to enhance the sensitivity and selectivity of detection methods while minimizing the use of harmful solvents. Additionally, his work in the analysis of pollutants and trace elements has significant implications for public health and environmental monitoring.

Publication Top Notes:

Development of a dispersive liquid-liquid microextraction method based on a ternary deep eutectic solvent as chelating agent and extraction solvent for preconcentration of …
Citations: 133
Molecularly imprinted-solid phase extraction combined with simultaneous derivatization and dispersive liquid–liquid microextraction for selective extraction and 
Citations: 124
Liquid phase microextraction of pesticides: a review on current methods
Citations: 113
Cyclohexylamine as extraction solvent and chelating agent in extraction and preconcentration of some heavy metals in aqueous samples based on heat-induced homogeneous liquid …
Citations: 62
Determination of methamphetamine, amphetamine and ecstasy by inside-needle adsorption trap based on molecularly imprinted polymer followed by GC-FID determination
Citations: 61