Assoc. Prof. Dr. Mohamed Ebrahim | Materials Chemistry | Best Researcher Award
Assoc. Prof. Dr. Mohamed Ebrahim | Materials Chemistry |Solid State Physics research at National Research Center, Egypt
M. R. Ebrahim, born in Giza, Egypt, is a distinguished researcher in solid-state physics at the National Research Centre (NRC), Egypt. He obtained his Ph.D. in Experimental Physics from Mansoura University, specializing in the synthesis and preparation of Al/Ru bi-layers. His expertise lies in severe plastic deformation (SPD) and surface mechanical alloying (SMA) of aluminum. He has significantly contributed to materials science with innovations such as Surface Mechanical Attrition Treatment (SMAT), for which he holds a patent. His research has advanced aluminum composites, corrosion resistance, and electrochemical behavior, leading to applications in supercapacitors, coatings, and energy storage devices. He has authored numerous publications in high-impact journals and collaborates internationally in materials engineering. His work integrates theoretical physics with experimental applications, contributing significantly to nanomaterials, electrochemistry, and advanced materials.
Professional Profile :
Summary of Suitability for Award:
M. R. Ebrahim is a highly accomplished researcher specializing in solid-state physics, severe plastic deformation (SPD), and surface mechanical alloying (SMA). His groundbreaking innovations, such as Surface Mechanical Attrition Treatment (SMAT), have significantly advanced materials science, particularly in supercapacitor development, corrosion resistance, and electrochemical behavior. His patents, numerous high-impact publications, and contributions to industrial and academic research demonstrate his expertise and leadership in his field. He has successfully bridged the gap between theoretical physics and applied materials engineering, leading to practical advancements in nanomaterials and surface engineering. His active involvement in research collaborations, peer reviewing, and international conferences further strengthens his candidacy for this prestigious award. M. R. Ebrahim’s research excellence, technological innovations, and impactful contributions to materials science make him a highly deserving candidate for the “Best Researcher Award.” His patents, publications, and pioneering work in surface engineering and electrochemistry showcase his ability to drive scientific progress and innovation. Recognizing his achievements would honor his dedication to advancing materials science and inspire further groundbreaking research in the field.
🎓Education:
M. R. Ebrahim pursued his academic journey in physics, starting with a B.Sc. in Physics from Helwan University, Egypt. He furthered his studies with a Ph.D. in Experimental Physics from Mansoura University, focusing on synthesis and preparation of Al/Ru bi-layers. His doctoral research emphasized surface modifications, mechanical alloying, and electrochemical properties of aluminum-based materials. His educational background laid a strong foundation for his work in severe plastic deformation (SPD), surface engineering, and supercapacitor technology. His studies encompassed various aspects of solid-state physics, nanomaterials, and electrochemical behavior. With extensive laboratory experience, he gained expertise in materials characterization, thin-film coatings, and corrosion-resistant materials. His education has driven his innovations in advanced materials processing, mechanical attrition, and novel composite development, enabling him to make significant contributions to materials science and industrial applications.
🏢Work Experience:
M. R. Ebrahim has been a Researcher in Solid-State Physics at NRC, Egypt, since 2010, working extensively on surface mechanical alloying, corrosion resistance, and severe plastic deformation of aluminum-based materials. His research focuses on enhancing the mechanical, electrical, and electrochemical properties of metals for various applications. He pioneered SMAT technology for material surface modifications, significantly improving supercapacitor performance, dielectric properties, and composite coatings. His collaborations extend internationally, engaging in projects related to nano-coatings, energy storage, and metal reinforcement techniques. He has contributed to industrial advancements by integrating electrochemical engineering with material science, leading to innovative solutions for corrosion-resistant and high-performance aluminum materials. He actively publishes, reviews scientific papers, and participates in global conferences, sharing his expertise in materials modification, nanostructured composites, and energy applications. His work bridges the gap between fundamental physics and practical material applications, driving progress in advanced alloy engineering.